Advertisement

The Virtual Knowledge Graph System Ontop

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12507)

Abstract

Ontop is a popular open-source virtual knowledge graph system that can expose heterogeneous data sources as a unified knowledge graph. Ontop has been widely used in a variety of research and industrial projects. In this paper, we describe the challenges, design choices, new features of the latest release of Ontop v4, summarizing the development efforts of the last 4 years.

References

  1. 1.
    Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic web. ACM Trans. Database Syst. 43(3), 13:1–13:45 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. SWJ 8(3), 471–487 (2017)CrossRefGoogle Scholar
  4. 4.
    Calvanese, D., et al.: The MASTRO system for ontology-based data access. SWJ 2(1), 43–53 (2011)CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. JAR 39, 385–429 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query optimization. ACM TODS 15(2), 162–207 (1990)CrossRefGoogle Scholar
  7. 7.
    Chaloupka, M., Necasky, M.: Using Berlin SPARQL benchmark to evaluate relational database virtual SPARQL endpoints. Submitted to SWJ (2020)Google Scholar
  8. 8.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. DKE 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  9. 9.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C recommendation, W3C (2012)Google Scholar
  10. 10.
    Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: SPARQL 1.1 protocol. W3C recommendation, W3C (2013)Google Scholar
  11. 11.
    Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C recommendation (2013)Google Scholar
  12. 12.
    Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation, W3C (2013)Google Scholar
  13. 13.
    Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering SPARQL queries over databases under OWL 2 QL entailment regime. In: Proceedings of ISWC (2014)Google Scholar
  14. 14.
    Motik, B., et al.: OWL 2 Web Ontology Language: Profiles. W3C Recommendation, W3C (2012)Google Scholar
  15. 15.
    Namici, M., De Giacomo, G.: Comparing query answering in OBDA tools over W3C-compliant specifications. In: Proceedings of DL, vol. 2211. CEUR-WS.org (2018)Google Scholar
  16. 16.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Sem. 10, 133–173 (2008)zbMATHGoogle Scholar
  17. 17.
    Polleres, A.: From SPARQL to rules (and back). In: WWW, pp. 787–796. ACM (2007)Google Scholar
  18. 18.
    Priyatna, F., Corcho, Ó., Sequeda, J.F.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: WWW, pp. 479–490 (2014)Google Scholar
  19. 19.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_35CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Sem. 33, 141–169 (2015)CrossRefGoogle Scholar
  21. 21.
    Sequeda, J.F., Arenas, M., Miranker, D.P.: Ontology-based data access using views. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 262–265. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33203-6_29CrossRefGoogle Scholar
  22. 22.
    Unbehauen, J., Stadler, C., Auer, S.: Optimizing SPARQL-to-SQL rewriting. In: Proceedings of IIWAS, pp. 324–330. ACM (2013)Google Scholar
  23. 23.
    Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of IJCAI (2018)Google Scholar
  24. 24.
    Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview of systems and use cases. Data Intell. 1, 201–223 (2019)CrossRefGoogle Scholar
  25. 25.
    Xiao, G., Kontchakov, R., Cogrel, B., Calvanese, D., Botoeva, E.: Efficient handling of SPARQL OPTIONAL for OBDA. In: Proceedings of ISWC, pp. 354–373 (2018)Google Scholar
  26. 26.
    Xiao, G., Rezk, M., Rodríguez-Muro, M., Calvanese, D.: Rules and ontology based data access. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 157–172. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11113-1_11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.Ontopic s.r.l.BolzanoItaly
  3. 3.Birkbeck, University of LondonLondonUK
  4. 4.Virtual Vehicle Research GmbHGrazAustria
  5. 5.Umeå UniversityUmeåSweden
  6. 6.Imperial College LondonLondonUK

Personalised recommendations