Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. ArXiv, vol. 1607, p. 06450 (2016)
Google Scholar
Bhowmik, R., de Melo, G.: Be concise and precise: synthesizing open-domain entity descriptions from facts. In: Proceedings of The Web Conference 2019, pp. 116–126. ACM, New York (2019)
Google Scholar
Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inform. Process. Syst. 26, 2787–2795 (2013)
Google Scholar
Das, R., et al.: Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning. arXiv 1711.05851 (2017)
Google Scholar
Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of EMNLP 2018 (2018)
Google Scholar
van Erp, M., et al. (eds.): ISWC 2016. LNCS, vol. 10579. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68723-0
CrossRef
Google Scholar
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 1811–1818. AAAI Press (2018)
Google Scholar
Fu, Z., et al.: Fairness-aware explainable recommendation over knowledge graphs. In: Proceedings of the 43rd SIGIR 2020. ACM (2020)
Google Scholar
Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE++. VLDB J. 24(6), 707–730 (2015)
CrossRef
Google Scholar
Gardner, M., Talukdar, P.P., Kisiel, B., Mitchell, T.M.: Improving learning and inference in a large knowledge-base using latent syntactic cues. In: Proceedings of EMNLP 2013, pp. 833–838. ACL (2013)
Google Scholar
Gardner, M., Talukdar, P.P., Krishnamurthy, J., Mitchell, T.M.: Incorporating vector space similarity in random walk inference over knowledge bases. In: Proceedings of EMNLP 2014, pp. 397–406. ACL (2014)
Google Scholar
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, 13–15 May 2010
Google Scholar
Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space. In: Proceedings of EMNLP 2015, pp. 318–327. ACL (2015)
Google Scholar
Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for out-of-knowledge-base entities: a graph neural network approach. In: Proceedings of IJCAI, pp. 1802–1808. AAAI Press (2017)
Google Scholar
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing (2017)
Google Scholar
Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5
CrossRef
Google Scholar
Hogan, A., et al.: Knowledge graphs. ArXiv, vol. 2003, p. 02320 (2020)
Google Scholar
Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of ACL-IJCNLP 2015, pp. 687–696. ACL (2015)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). http://arxiv.org/abs/1412.6980
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)
Google Scholar
Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., Hajishirzi, H.: Text generation from knowledge graphs with graph transformers. In: Proceedings of NAACL 2019, pp. 2284–2293. ACL, June 2019
Google Scholar
Lao, N., Mitchell, T.M., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings of EMNLP 2011, pp. 529–539. ACL (2011)
Google Scholar
Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward shaping. arXiv abs/1808.10568 (2018). http://arxiv.org/abs/1808.10568
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI Conference on Artificial Intelligence (2015)
Google Scholar
Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: An introduction to AnyBURL. In: Benzmüller, C., Stuckenschmidt, H. (eds.) KI 2019. LNCS (LNAI), vol. 11793, pp. 244–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30179-8_20
CrossRef
Google Scholar
Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for knowledge base completion. In: Proceedings of ACL 2015. ACL (2015)
Google Scholar
Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of NAACL, vol. 2018, pp. 327–333 (2018)
Google Scholar
Nguyen, D.Q.: An overview of embedding models of entities and relationships for knowledge base completion. arXiv 1703.08098 (2017)
Google Scholar
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling Relational Data with Graph Convolutional Networks. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
CrossRef
Google Scholar
Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: Proceedings of AAAI (2019)
Google Scholar
Shen, Y., Chen, J., Huang, P.S., Guo, Y., Gao, J.: M-Walk: Learning to walk over graphs using Monte Carlo tree search. In: Advances in Neural Information Processing Systems 31, pp. 6786–6797. Curran Associates, Inc. (2018)
Google Scholar
Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019)
Google Scholar
Toutanova, K., Lin, V., Yih, W., Poon, H., Quirk, C.: Compositional learning of embeddings for relation paths in knowledge base and text. In: Proceedings of ACL 2016. ACL (2016). http://aclweb.org/anthology/P/P16/P16-1136.pdf
Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic graphs. In: ICLR (2019)
Google Scholar
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33nd International Conference on Machine Learning. (ICML 2016), vol. 48, pp. 2071–2080 (2016)
Google Scholar
Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: International Conference on Learning Representations (2020)
Google Scholar
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017)
Google Scholar
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention Networks. In: International Conference on Learning Representations (2018)
Google Scholar
Wang, L., et al.: Link prediction by exploiting network formation games in exchangeable graphs. In: Proceedings of IJCNN 2017, pp. 619–626 (2017). https://ieeexplore.ieee.org/document/7965910/
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI 2014, pp. 1112–1119. AAAI Press (2014)
Google Scholar
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)
MATH
Google Scholar
Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., Zhang, Y.: Reinforcement knowledge graph reasoning for explainable recommendation. In: Proceedings of SIGIR 2019, pp. 285–294. ACM, New York (2019)
Google Scholar
Xian, Y., et al.: CAFE: coarse-to-fine knowledge graph reasoning for e-commerce recommendation. In: Proceedings of CIKM 2020. ACM (2020)
Google Scholar
Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: Proceedings of EMNLP 2017. ACL (2017)
Google Scholar
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR abs/1412.6575 (2014)
Google Scholar
Yang, K., Xinyu, K., Wang, Y., Zhang, J., de Melo, G.: Reinforcement learning over knowledge graphs for explainable dialogue intent mining. IEEE Access 8, 85348–85358 (2020). https://ieeexplore.ieee.org/document/9083954
Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph Transformer networks. Adv. Neural Inform. Process. Syst. 32, 11983–11993 (2019)
Google Scholar