Skip to main content

Leveraging Semantic Parsing for Relation Linking over Knowledge Bases

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)


Knowledge base question answering systems are heavily dependent on relation extraction and linking modules. However, the task of extracting and linking relations from text to knowledge bases faces two primary challenges; the ambiguity of natural language and lack of training data. To overcome these challenges, we present SLING, a relation linking framework which leverages semantic parsing using Abstract Meaning Representation (AMR) and distant supervision. SLING integrates multiple approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledge base. The experiments on relation linking using three KBQA datasets, QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

    Ideally, we can do the hard filtering with the relation connections. However as REL is a component of a whole KBQA pipeline. To mitigate potential error propagation from entity linking, most works adopt a soft approach  [6, 16].

  6. 6.

    We exclude rdf:type, and rdfs:label to follow same setting in [16].

  7. 7.

    Falcon numbers on QALD-7 and LC-QuAD 1.0 are taken from their paper.


  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).

    Chapter  Google Scholar 

  2. Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., Fischer, A.: Introduction to neural network based approaches for question answering over knowledge graphs. CoRR abs/1907.09361 (2019)

    Google Scholar 

  3. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT 2019, pp. 4171–4186 (2019)

    Google Scholar 

  4. Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and relation linking for question answering over knowledge graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 108–126. Springer, Cham (2018).

    Chapter  Google Scholar 

  5. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngomo, A.N.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)

    Article  Google Scholar 

  6. Hu, S., Zou, L., Yu, J.X., Wang, H., Zhao, D.: Answering natural language questions by subgraph matching over knowledge graphs. IEEE Trans. Knowl. Data Eng. 30(5), 824–837 (2018)

    Article  Google Scholar 

  7. Kingsbury, P., Palmer, M.: PropBank: the next level of treebank. In: Proceedings of Treebanks and lexical Theories, vol. 3. Citeseer (2003)

    Google Scholar 

  8. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Zero-shot entity linking with dense entity retrieval. arXiv:1911.03814 (2019)

  9. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  10. Lukovnikov, D., Fischer, A., Lehmann, J.: Pretrained transformers for simple question answering over knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 470–486. Springer, Cham (2019).

    Chapter  Google Scholar 

  11. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: ACL 2009, pp. 1003–1011 (2009)

    Google Scholar 

  12. Mulang, I.O., Singh, K., Orlandi, F.: Matching natural language relations to knowledge graph properties for question answering. In: SEMANTiCS 2017, pp. 89–96 (2017)

    Google Scholar 

  13. Naseem, T., Shah, A., Wan, H., Florian, R., Roukos, S., Ballesteros, M.: Rewarding smatch: Transition-based AMR parsing with reinforcement learning. arXiv preprint arXiv:1905.13370 (2019)

  14. Pan, J.Z., Zhang, M., Singh, K., Harmelen, F., Gu, J., Zhang, Z.: Entity enabled relation linking. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 523–538. Springer, Cham (2019).

    Chapter  Google Scholar 

  15. Rossiello, G., Gliozzo, A., Farrell, R., Fauceglia, N.R., Glass, M.R.: Learning relational representations by analogy using hierarchical siamese networks. In: NAACL-HLT (1), pp. 3235–3245. Association for Computational Linguistics (2019)

    Google Scholar 

  16. Sakor, A., et al.: Old is gold: linguistic driven approach for entity and relation linking of short text. In: NAACL: HLT 2019, pp. 2336–2346 (2019)

    Google Scholar 

  17. Singh, K., Both, A., Sethupat, A., Shekarpour, S.: Frankenstein: a platform enabling reuse of question answering components. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 624–638. Springer, Cham (2018).

    Chapter  Google Scholar 

  18. Singh, K., et al.: Capturing knowledge in semantically-typed relational patterns to enhance relation linking. In: K-CAP 2017, pp. 1–8 (2017)

    Google Scholar 

  19. Soares, L.B., FitzGerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: distributional similarity for relation learning. In: ACL 2019, pp. 2895–2905 (2019)

    Google Scholar 

  20. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017).

    Chapter  Google Scholar 

  21. Usbeck, R., Gusmita, R.H., Ngomo, A.N., Saleem, M.: 9th challenge on question answering over linked data (QALD-9) (invited paper). In: Semdeep/NLIWoD@ISWC. CEUR Workshop Proceedings, vol. 2241, pp. 58–64. (2018)

    Google Scholar 

  22. Usbeck, R., Ngomo, A.-C.N., Haarmann, B., Krithara, A., Röder, M., Napolitano, G.: 7th open challenge on question answering over linked data (QALD-7). In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 59–69. Springer, Cham (2017).

    Chapter  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  24. Yu, M., Yin, W., Hasan, K.S., dos Santos, C.N., Xiang, B., Zhou, B.: Improved neural relation detection for knowledge base question answering. In: ACL 2017, pp. 571–581 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nandana Mihindukulasooriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mihindukulasooriya, N. et al. (2020). Leveraging Semantic Parsing for Relation Linking over Knowledge Bases. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics