Advertisement

Impact Analysis of Industrial Standards on Blockchains for Food Supply Chains

Conference paper
  • 236 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 598)

Abstract

One of the major challenges for the use of the Blockchain technology in industrial applications is the lack of existing standards. They ensure the interoperability of sensors, machines and the data-sharing between stakeholders within a food supply chain. Existing Blockchain-independent implementations of technologies for increasing transparency in supply chains use communication standards whose transferability to Blockchain applications has not yet been analysed sufficiently. This publication analyses the suitability of established standards regarding their use in Blockchains. In this context, the requirements for the distributed database and for the protection of sensitive company data must be considered. Therefore an analysis of eventually necessary changes is executed for the adoption of standards and how they could be implemented.

Keywords

Food chain Supply chain management Blockchain Standards 

References

  1. 1.
  2. 2.
  3. 3.
    Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks in industry and services: research scope and challenges. In: IFAC Proceedings, Nantes, vol. 40, pp. 33–42 (2007)Google Scholar
  4. 4.
    Frentrup, M., Theuvsen, L.: Transparency in supply chains: is trust a limiting factor? In: European Association of Agricultural Economists (ed.) 99th EAAE Seminar ‘Trust and Risk in Business Networks. EAAE, pp. 64–74(2006)Google Scholar
  5. 5.
    Abeyratne, S.A., Monfared, R.P.: Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 5, 1–10 (2016)Google Scholar
  6. 6.
    Camarinha-Matos, Luis M., Pereira-Klen, A., Afsarmanesh, H. (eds.): PRO-VE 2011. IAICT, vol. 362. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23330-2CrossRefGoogle Scholar
  7. 7.
    Schuh, G., Anderl, R., Dumitrescu, R., Krüger, A., ten Hompel, M.: Industrie 4.0 maturity index. Managing Digital Transform. Co. (2020) Google Scholar
  8. 8.
    Betti, F., Bezamat, F., Fendri, M., Fernandez, B., Küpper, D., Okur, A.: Share to Gain: Unlocking Data Value in Manufacturing (2020)Google Scholar
  9. 9.
    Herweijer, C., Waghray, D., Warren, S.: Building Block(chain)s for a Better Planet (2018)Google Scholar
  10. 10.
    Janssen, C., et al.: GS1 Global traceability standard. GS1’s framework for the design of interoperable traceability systems for supply chains (2017)Google Scholar
  11. 11.
    Füßler, A., Siruet, R.: Konzeptionelle Übertragung bestehender Traceability-Prozesse auf Distributed-Ledger-basierte Anwendungsumgebungen. Entscheidungshilfe für die Umsetzung im Forschungsprojekt SiLKe (2020)Google Scholar
  12. 12.
    Kennedy, A., Troeger, R., Morgan, G., Traub, K., Allgaier, P., Arguin, P.: EPCIS and CBV implementation guideline using EPCIS and CBV standards to gain visibility of business processes (2017)Google Scholar
  13. 13.
    Dabydeen, A., Laur, R.: Product Recall in Multiple Recall Jurisdictions Implementation Guideline (2012)Google Scholar
  14. 14.
    Kennedy, A., et al.: EPC Information Services (EPCIS) Standard (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  1. 1.Institute for Industrial Management (FIR) at RWTH Aachen UniversityAachenGermany
  2. 2.GS1 Germany GmbHCologneGermany

Personalised recommendations