Skip to main content

Environmental Tracers and Isotopic Techniques: Tools for Sustainable Water Management

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Isotopes, trace element and noble gases are regularly applied to quantify subsurface flow paths, sources, residence times and reactive processes in the geochemistry. Analysis of complex system necessitates use of isotopic techniques for more accurate resolution of the fluid transport and solute transformation. In this book chapter, a state of art of review has been discussed to understand the use of isotopic techniques and environmental tracers in water flow and solute movements. A detail discussion has been presented in this chapter to highlights applicability of the stable isotopes, noble gases as environmental tracers in water flow and contaminant transport study. This chapter will be helpful in designing experiments and field scale observation stations for investigation of groundwater pollution loading and implementation of management plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikary, P. P., Chandrasekharan, H., Dash, Ch. J., & Jakhar, P. (2014). Integrated isotopic and hydrochemical approach to identify and evaluate the source and extent of groundwater pollution in west Delhi. India, Indian Journal of Soil Conservation, 42(1), 17–28.

    Google Scholar 

  • Aeschbach-Hertig, W., Peeters, F., Beyerle, U., & Kipfer, R. (2000). Paleotemprature reconstruction from noble gas in groundwater taking into account equilibrium with trapped air. Nature, 405, 1040–1044.

    Google Scholar 

  • Allen, D. M. (2004). Sources of ground water salinity on islands using 18O, 2H, and 34S. Groundwater, 42(1), 17–31.

    Article  Google Scholar 

  • Allison, G. B., Gee, G. W., & Tyler, S. W. (1994). Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America Journal, 58(1), 6–14.

    Article  Google Scholar 

  • Barbieri, M., Boschetti, T., Petitta, M., & Tallini, M. (2005). Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Applied Geochemistry, 20(11), 2063–2081.

    Article  Google Scholar 

  • Beyer, M., Koeniger, P., Gaj, M., Hamutoko, J. T., Wanke, H., & Himmelsbach, T. (2016). A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments. Journal of Hydrology, 533, 627–643.

    Article  Google Scholar 

  • Böhnke, R., Geyer, S., & Kowski, P. (2002). Using environmental isotopes 2H and 18O for identification of infiltration processes in floodplain ecosystems of the River Elbe. Isotopes in Environmental and Health Studies, 38(1), 1–13.

    Article  Google Scholar 

  • Bouchaou, L., Hsissou, Y., Krimissa, M., Krimissa, S., & Mudry, J. (2005). 2H and 18O isotopic study of ground waters under a semi-arid climate. In Environmental chemistry (pp. 57–64). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Bowen, G. J., Cai, Z., Fiorella, R. P., & Putman, A. L. (2019). Isotopes in the water cycle: regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences, 47.

    Google Scholar 

  • Bowling, D. R., Pataki, D. E., & Randerson, J. T. (2008). Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist, 178(1), 24–40.

    Article  Google Scholar 

  • Broers, H. P. (2004). The spatial distribution of groundwater age for different geohydrological situations in the Netherlands: Implications for groundwater quality monitoring at the regional scale. Journal of Hydrology, 299(2004), 84–106. https://doi.org/10.1016/j.jhydrol.2004.04.023

    Article  Google Scholar 

  • Brüggemann, N., Gessler, A., Kayler, Z., Kee, S. G., Badeck, F., et al. (2011). Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences, 8(11), 3457–3489.

    Google Scholar 

  • Cendón, D. I., Larsen, J. R., Jones, B. G., Nanson, G. C., Rickleman, D., Hankin, S. I., et al. (2010). Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia. Journal of Hydrology, 392(3–4), 150–163.

    Google Scholar 

  • Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohi, A., et al. (2009a). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36(3), 199–213.

    Google Scholar 

  • Cernusak, L. A., Winter, K., & Turner, B. L. (2009). Physiological and isotopic (δ13C and δ18O) responses of three tropical tree species to water and nutrient availability. Plant, Cell and Environment, 32(10), 1441–1455.

    Article  Google Scholar 

  • Choi, B. Y., Yun, S. T., Mayer, B., & Kim, K. H. (2011). Sources and biogeochemical behavior of nitrate and sulfate in an alluvial aquifer: Hydrochemical and stable isotope approaches. Applied Geochemistry, 26(7), 1249–1260.

    Article  Google Scholar 

  • Czerwieniec, E., & Tomaszek, J. A. (2007). Stable isotopes of oxygen and nitrogen in nitrate identification. Measuring techniques. Environment Protection Engineering, 33(2), 97.

    Google Scholar 

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (180) investigations on the processes controlling fluoride contamination of groundwater. Journal of Contaminant Hydrology, 24, 85–96.

    Article  Google Scholar 

  • David, K., Timms, W., & Baker, A. (2015). Direct stable isotope porewater equilibration and identification of groundwater processes in heterogeneous sedimentary rock. Science of the Total Environment, 538, 1010–1023.

    Article  Google Scholar 

  • DePaolo, D. J., Conrad, M. E., Maher, K., & Gee, G. W. (2004). Evaporation effects on oxygen and hydrogen isotopes in deep vadose zone pore fluids at Hanford, Washington. Vadose Zone Journal, 3(1), 220–232.

    Article  Google Scholar 

  • Deutsch, B., Mewes, M., Liskow, I., & Voss, M. (2006). Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Organic Geochemistry, 37(10), 1333–1342.

    Article  Google Scholar 

  • Dulaiova, H., & Burnett, W. C. (2006). Radon loss across the water-air interface (Gulf of Thailand) estimated experimentally from 222Rn–224Ra. Geophysical Research Letters, 3(5).

    Google Scholar 

  • Gröning, M., Froehlich, K., De Regge, P., & Danesi, P. R. (1999). Intended use of the IAEA reference materials—Part II: Examples on reference materials certified for stable isotope composition. Special Publication-Royal Society of Chemistry, 238, 81–92.

    Google Scholar 

  • Hoehn, E., Gunten, H. R. V., Stauffer, F., & Dracos, T. (1992). Radon-222 as a groundwater tracer. A laboratory study. Environment Science and Technology, 26, 734–738.

    Article  Google Scholar 

  • Jona-Lasinio, G., Costantini, M. L., Calizza, E., Pollice, A., Bentivoglio, F., Orlandi, L., et al. (2015). Stable isotope-based statistical tools as ecological indicator of pollution sources in Mediterranean transitional water ecosystems. Ecological Indicators, 23–31. https://doi.org/10.1016/j.ecolind.2015.03.006

  • Joshi, S. K., Rai, S. P., Sinha, R., Gupta, S., Densmore, A. L., Rawat, Y. S., & Shekhar, S. (2018). Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H). Journal of Hydrology, 559, 835–847.

    Article  Google Scholar 

  • Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., & Kendall, C. (2011). Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science and Technology, 45, 8225–8232. https://doi.org/10.1021/es200779e

    Article  Google Scholar 

  • Kendall, C., & Aravena, R. (2000). Nitrate isotopes in groundwater systems. In Environmental tracers in subsurface hydrology (pp. 261–297). Springer, Boston, MA.

    Google Scholar 

  • Krishan, G. (2015). Environmental tracer techniques in groundwater investigations. Water and Energy International, 58(7), 57–63.

    Google Scholar 

  • Kumar, M., Ramanathan, A. L., Mukherjee, A., Sawlani, R., & Ranjan, S. (2019). Delineating sources of groundwater recharge and carbon in Holocene aquifers of the central Gangetic basin using stable isotopic signatures. Isotopes in Environmental and Health Studies, 55(3), 254–271.

    Article  Google Scholar 

  • Lapworth, D. J., MacDonald, A. M., Krishan, G., Rao, M. S., Gooddy, D. C., & Darling, W. G. (2015). Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. Geophysical Research Letters, 42(18), 7554–7562.

    Article  Google Scholar 

  • Loosli, H. H., Lehmann, B. E., Smethie, W. M. (2000). Noble gas radioisotopes: 37Ar, 85Kr, 39AR, 81Kr. Environmental Tracers in Subsurface Hydrology, 379–396.

    Google Scholar 

  • Luo, X., Jiao, J. J., Wang, X. S., Liu, K., Lian, E., & Yang, S. (2017). Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes. Journal of Hydrology, 546, 189–203.

    Article  Google Scholar 

  • Peterson, R. N., Burnett, W. C., Taniguchi, M., Chen, J., Santos, I. R., & Ishitobi, T. (2008). Radon and radium isotopes assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research, 113, C09021.

    Article  Google Scholar 

  • Pierchala, A., Rozanski, K., Dulinski, M., Gorczyca, Z., Marzec, M., & Czub, R. (2019). High-precision measurements of δ2H, δ18O and δ17O in water with the aid of cavity ring-down laser spectroscopy. Isotopes in Environmental and Health studies, 1–18.

    Google Scholar 

  • Prakash, R., Srinivasamoorthy, K., Gopinath, S., Saravanan, K., Vinnarasi, F., Ponnumani, G., et al. (2018). Radon isotopes of submarine groundwater discharge (SGD) in Coloeroon River Estuary, Tamil Nadu, India. Journal of Radioanalytical and Nuclear Chemistry, 317, 25–36.

    Article  Google Scholar 

  • Å anda, M., Kulasová, A., & Císlerová, M. (2009). Hydrological processes in the subsurface investigated by water isotopes and silica. Soil Water Resource, 4, 83–92.

    Article  Google Scholar 

  • Stumpp, C., Brüggemann, N., & Wingate, L. (2018). Stable isotope approaches in vadose zone research. Vadose Zone Journal, 17(1).

    Google Scholar 

  • Ta, T. T., Le, S. H., Trinh, H. Q., Luu, T. N. M., & Trinh, A. D. (2016). Interpretation of anthropogenic impacts (agriculture and urbanization) on tropical deltaic river network through the spatio-temporal variation of stable (N,O) isotopes of NO3−. Isotopes in Environmental Health Studies. https://doi.org/10.1080/10256016.2016.1142987

    Article  Google Scholar 

  • Tirumalesh, K., Shivanna, K., Noble, J., Narayan, K., & Xavier, K. (2007). Nuclear techniques to investigate source and origin of groundwater pollutants and their flow path at Indian Rare Earths Ltd., Cochin, Kerala. Journal of Radioanalytical and Nuclear Chemistry, 274(2), 307–313.

    Article  Google Scholar 

  • Widory, D., Petelet-Giraud, E., Brenot, A., Bronders, J., Tirez, K., & Boeckx, P. (2013). Improving the management of nitrate pollution in water by the use of isotope monitoring: The δ15N, δ18O and δ11B triptych. Isotopesin Environmental Health Studies, 49, 29–47. https://doi.org/10.1080/10256016.2012.666540

    Article  Google Scholar 

  • Wiegert, C., Aeppli, C., Knowles, T., Holmstrand, H., Evershed, R., Pancost, R. D., et al. (2012). Dual carbon–chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Environmental Science & Technology, 46(20), 10918–10925.

    Google Scholar 

  • Xiao, Y. K., Yinming, Z., Qingzhong, W., Haizhen, W., Weiguo, L., & Eastoe, C. J. (2002). A secondary isotopic reference material of chlorine from selected seawater. Chemical Geology, 182(2–4), 655–661.

    Article  Google Scholar 

  • Zhang, Y., Li, F., Zhang, Q., Li, J., & Liu, Q. (2014). Tracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopes. Science of the Total Environment, 490, 213–222.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to reviewers and editors for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.K., Goel, M. (2021). Environmental Tracers and Isotopic Techniques: Tools for Sustainable Water Management. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_26

Download citation

Publish with us

Policies and ethics