Skip to main content

Aquifer Vulnerability Assessment of Chaka River Basin, Purulia, India Using GIS-Based DRASTIC Model

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

The quality of groundwater, the vast freshwater reserve, is degrading and deteriorating with rapid increase in urbanization and industrialization. Anthropogenic activities are highly responsible for pollution and contamination of groundwater; this, in turn, poses a serious threat to the environment as a whole. For efficient management of this water resource mapping, the vulnerable aquifer zones are a necessity. The study conducted on Chaka watershed aims to delineate the vulnerable aquifer zones of the region using GIS-based DRASTIC model. This model uses 7 parameters for assessing groundwater vulnerability namely Depth to water level (D), Recharge (R), Aquifer media (A), Soil media (S), Topography (T), Impact of vadose zone (I), and Hydraulic conductivity (C). The study area is mainly an agricultural watershed which incorporates the heavy usage of insecticides, pesticides and fertilizers of various kinds. The rainwater that seeps underground thus enriches itself with such chemicals and contaminates the underlying aquifer. The aquifer vulnerability map was generated using overlay analysis and the study area is classified into 5 aquifer vulnerability zones. The validation was done using the physical parameter Total Dissolved Solids (TDS). Few villages with very high vulnerability are Kamta, Takaria, Babuijor, Deorang etc. The output map can be used for future references for efficient planning and management and carrying out research work as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary, P. P., Chandrasekharan, H., Chakraborty, D., & Kamble, K. (2010). Assessment of groundwater pollution in west Delhi, India using geostatistical approach. Environmental Monitoring and Assessment, 167, 599–615.

    Article  Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2018). A GIS based DRASTIC model for assessing aquifer vulnerability in Southern Punjab, India. Modeling Earth Systems and Environment, 4, 635. https://doi.org/10.1007/s40808-018-0449-6.

    Article  Google Scholar 

  • Al-Abadi, A. M., Al-Shamma’a, A. M., & Aljabbari, M. H. (2017). A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Applied Water Science, 7(1), 89–101. https://doi.org/10.1007/s13201-014-0221-7.

    Article  Google Scholar 

  • Al Kuisi, M., El-Naqa, A., & Hammouri, N. (2006). Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. Environmental Geology, 50(5), 651–667. https://doi.org/10.1007/s00254-006-0239-8.

    Article  Google Scholar 

  • Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., & Hackett, G. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US EPA Report 600/287/035, US Environmental Protection Agency.

    Google Scholar 

  • Assaf, H., & Saadeh, M. (2009). Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: the case of the Upper Litani Basin, Lebanon. Water resources management, 23(4), 775–796. https://doi.org/10.1007/s11269-008-9299-8.

    Article  Google Scholar 

  • Awawdeh, M., & Nawafleh, A. (2008). A GIS-based EPIK model for assessing aquifer vulnerability in Irbid Governorate, North Jordan. Jordan Journal of civil Engineering, 2(3), 267–278.

    Google Scholar 

  • Bera, A., Mukhopadhyay, B.P., & Barua, S. (2020). Delineation of groundwater potential zones in Karha river basin, Maharashtra, India using AHP and geospatial techniques. Arabian Journal of Geosciences.

    Google Scholar 

  • Biswas, S., Mukhopadhyay, B. P., & Bera, A. (2020). Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79, 302.

    Article  Google Scholar 

  • Chaturvedi, R.S. (1973). A note on the investigation of ground water resources in western districts of Uttar Pradesh. Annual Report, UP Irrigation Research Institute, pp 86–122.

    Google Scholar 

  • Civita, M., & De Maio, M. (1997). SINTACS: unsistemaparametrico per la valutazione e la cartografiadellavulnerabilitàdegliacquiferiall’inquinamento: metodologia e automatizzazione (SINTACS: A Parametric System for the Assessment and Mapping of the Groundwater Vulnerability to Contamination: Methodology and Automation) (208 pp). Pitagora, Bologna.

    Google Scholar 

  • Dixon, B. (2005). Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Applied Geography, 25(4), 327–347. https://doi.org/10.1016/j.apgeog.2005.07.002.

    Article  Google Scholar 

  • Daly, D., & Drew, D. (1999). Irish methodologies for karst aquifer protection. In: B. Beek (Ed.), Hydrogeology and engineering geology of sinkholes and karst (pp. 267–272). Balkema, Rotterdam.

    Google Scholar 

  • Doerfliger, N., & Zwahlen, F. (1997). EPIK: A new method for outlining of protection areas in karstic environment. In: G. Günay, A.I. Jonshon (Eds.), International symposium and field seminar on “karst waters and environmental impacts”, Antalya, Turkey, Balkema, Rotterdam (pp. 117–123).

    Google Scholar 

  • Doerfliger, N., Jeannin, P. Y., & Zwahlen, F. (1999). Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology, 39(2), 165–176. https://doi.org/10.1007/s002540050446.

    Article  Google Scholar 

  • Foster, S. S. D. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In W. van Duijvenbooden & H. G. van Waegeningh (Eds.), Proceedings and information in vulnerability of soil and ground-water to pollutants (Vol. 38, pp. 69–86). The Hague: TNO Committee on Hydrological Research.

    Google Scholar 

  • Garewal, S.K., Vasudeo, A.D., Landge, V.S., & Ghare, A.D. (2016). Groundwater vulnerability mapping using modified DRASTIC ANP. Građevinar, 4, 283–296. https://doi.org/10.14256/JCE.1951.2016.

  • Ghazavi, R., & Ebrahimi, Z. (2015). Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. International Journal of Environmental Science and Technology, 12(9), 2909–2918. https://doi.org/10.1007/s13762-015-0813-2.

    Article  Google Scholar 

  • Huan, H., Wang, J., & Teng, Y. (2012). Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Science of the Total Environment, 440, 14–23. https://doi.org/10.1016/j.scitotenv.2012.08.037.

    Article  Google Scholar 

  • Ibe, K. M., Nwankwor, G. I., & Onyekuru, S. O. (2001). Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri, Southeastern Nigeria. Environmental Monitoring and Assessment, 67(3), 323–360. https://doi.org/10.1023/A:1006358030562.

    Article  Google Scholar 

  • Jackson, T. J. (2002). Remote sensing of soil moisture: Implications for groundwater recharge. Hydrogeology Journal, 10, 40–51. https://doi.org/10.1007/s10040-001-0168-2.

    Article  Google Scholar 

  • Jilali, A., Zarhloule, Y., & Georgiadis, M. (2015). Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: Application of DRASTIC and AVI methods. Arabian Journal of Geosciences, 8(3), 1611–1621. https://doi.org/10.1007/s12517-014-1320-3.

    Article  Google Scholar 

  • KardanMoghaddam, H., Jafari, F., & Javadi, S. (2017). Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrological Sciences Journal, 62(1), 137–146. https://doi.org/10.1080/02626667.2015.1080827.

    Article  Google Scholar 

  • Kaur, R., & Rosin, K.G. (2011). Ground water vulnerability assessment—Challenges and opportunities. http://www.cgwb.gov.in/documents/papers/incidpapers/Paper%2012-%20R.%20Kaur.pdf. Accessed May 12, 2011.

  • Kumar, S., Thirumalaivasan, D., Radhakrishnan, N., & Mathew, S. (2013). Groundwater vulnerability assessment using SINTACS model. Geomatics, Natural Hazards and Risk, 4(4), 339–354. https://doi.org/10.1080/19475705.2012.732119.

    Article  Google Scholar 

  • Lathamani, R., Janardhana, M. R., Mahalingam, B., & Suresha, S. (2015). Evaluation of aquifer vulnerability using drastic model and GIS: A case study of Mysore city, Karnataka, India. Aquatic Procedia, 4, 1031–1038. https://doi.org/10.1016/j.aqpro.2015.02.130.

    Article  Google Scholar 

  • Mato RRAM. (2002). Groundwater pollution in urban Dar es Salaam, Tanzania: Assessing vulnerability and protection priorities. PhD Thesis, Eindhoven University of Technology, The Netherlands, 194 pp. https://doi.org/10.6100/IR554794.

  • Majandang, J., & Sarapirome, S. (2013). Groundwater vulnerability assessment and sensitivity analysis in NongRua, KhonKaen, Thailand, using a GIS-based SINTACS model. Environmental Earth Sciences, 68(7), 2025–2039. https://doi.org/10.1007/s12665-012-1890-x.

    Article  Google Scholar 

  • Mondal, I., Bandyopadhyay, J., & Chowdhury, P. (2019). A GIS based DRASTIC model for assessing groundwater vulnerability in Jangalmahal area, West Bengal, India. Sustainable Water Resources Management, 5(2), 557–573. https://doi.org/10.1007/s40899-018-0224-x.

    Article  Google Scholar 

  • Mondal, N. C., Adike, S., Raj, P. A., Singh, V. S., Ahmed, S., & Jayakumar, K. V. (2018). Assessing aquifer vulnerability using GIS-based DRASTIC model coupling with hydrochemical parameters in hard rock area from Southern India. Groundwater (pp. 67–82). Singapore: Springer.

    Chapter  Google Scholar 

  • Neshat, A., Pradhan, B., Pirasteh, S., & Shafri, H. Z. M. (2014). Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental earth sciences, 71(7), 3119–3131. https://doi.org/10.1007/s12665-013-2690-7.

    Article  Google Scholar 

  • Prasad, R. K., Singh, V. S., Krishnamacharyulu, S. K. G., & Banerjee, P. (2011). Application of drastic model and GIS: For assessing vulnerability in hard rock granitic aquifer. Environmental Monitoring and Assessment, 176, 143–155. https://doi.org/10.1007/s10661-010-1572-7.

    Article  Google Scholar 

  • Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography, 28, 32–53. https://doi.org/10.1016/j.apgeog.2007.07.008.

    Article  Google Scholar 

  • Raju, N. J., Ram, P., & Gossel, W. (2014). Evaluation of groundwater vulnerability in the lower Varuna catchment area, Uttar Pradesh, India using AVI concept. Journal of the Geological Society of India, 83(3), 273–278. https://doi.org/10.1007/s12594-014-0039-9.

    Article  Google Scholar 

  • Saidi, S., Bouri, S., & Dhia, H. B. (2010). Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environmental Earth Sciences, 59(7), 1579–1588. https://doi.org/10.1007/s12665-009-0143-0.

    Article  Google Scholar 

  • Sener, E., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal, 21(3), 701–714.

    Article  Google Scholar 

  • Singh, A., Srivastav, S. K., Kumar, S., & Chakrapani, G. J. (2015). A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environmental earth sciences, 74(7), 5475–5490. https://doi.org/10.1007/s12665-015-4558-5.

    Article  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & De Maio, M. (2016). Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model. Arabian Journal of Geosciences, 9(6), 438. https://doi.org/10.1007/s12517-016-2456-0.

    Article  Google Scholar 

  • Vrba, J. (1991). Mapping of groundwater vulnerability International Association of Hydrogeologists, Ground Water Protection Commission, unpublished working paper for meeting in Tampa, Florida, USA.

    Google Scholar 

  • World Health Organization. (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  • Zhou, J., Li, G., Liu, F., Wang, Y., & Guo, X. (2010). DRAV model and its application in assessing groundwater vulnerability in arid area: A case study of pore phreatic water in Tarim Basin, Xinjiang, Northwest China. Environmental Earth Sciences, 60(5), 1055–1063. https://doi.org/10.1007/s12665-009-0250-y.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankful to the Indian Meteorological Department (IMD), Indian Space Research Organization (ISRO), National Remote Sensing Centre (NRSC), Central Ground Water Board (CGWB) and Indian Institute of Remote Sensing (IIRS) for continue support during the work. We are thankful to Dr. Pravat Kumar Shit and Dr. Partha Pratim Adhikary (Editors, Geostatistics and Geospatial Technologies for Groundwater Resources in India) for suggesting modifications, which improved our manuscript. The authors also extend their thanks to anonymous reviewers for the valuable constructive comments and suggestions.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, A., Mukhopadhyay, B.P., Biswas, S. (2021). Aquifer Vulnerability Assessment of Chaka River Basin, Purulia, India Using GIS-Based DRASTIC Model. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_12

Download citation

Publish with us

Policies and ethics