Skip to main content

Tanycyte Regulation of Hypophysiotropic TRH Neurons

  • Chapter
  • First Online:
Glial-Neuronal Signaling in Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 11))

  • 497 Accesses

Abstract

Tanycytes lining the third ventricle are emerging as an integral component of the hypothalamic regulatory system. Their functions, including the regulation of the hypothalamic-pituitary-thyroid (HPT) axis, extend far beyond their role as barrier cells. This chapter summarizes the various mechanisms by which tanycytes contribute to the control of the HPT axis. These cells modulate thyroid hormone negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) neurons by regulating local T3 availability. In addition, tanycytes control the availability of TRH transport to the anterior pituitary by at least three different mechanisms. These include degradation of TRH immediately following its release from hypophysiotropic TRH axon terminals, repositioning of tanycyte end feet processes between the TRH axons and the fenestrated capillaries of the portal system, and inhibiting the activity of TRH terminals via glutamate signaling and the endocannabinoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE (2001) Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest 107(8):1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akmayev IG, Fidelina OV (1976) Morphological aspects of the hypothalamic-hypophyseal system. VI. The tanycytes: their relation to the sexual differentiation of the hypothalamus. An enzyme-histochemical study. Cell Tissue Res 173(3):407–416

    CAS  PubMed  Google Scholar 

  • Anguiano B, Quintanar A, Luna M, Navarro L, Ramirez del Angel A, Pacheco P, Valverde C (1995) Neuroendocrine regulation of adrenal gland and hypothalamus 5'deiodinase activity. II. Effects of splanchnicotomy and hypophysectomy. Endocrinology 136(8):3346–3352

    Article  CAS  PubMed  Google Scholar 

  • Arrojo Drigo R, Fonseca TL, Pedro Saar Werneck-de-Castro J, Bianco AC (2013) Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 1830(7):3958–3964

    Google Scholar 

  • Barrett P, Ebling FJ, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM, Archer ZA, Mercer JG, Morgan PJ (2007) Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148(8):3608–3617

    Article  CAS  PubMed  Google Scholar 

  • Bassett JH, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Bauer K, Carmeliet P, Schulz M, Baes M, Denef C (1990) Regulation and cellular localization of the membrane-bound thyrotropin-releasing hormone-degrading enzyme in primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology 127(3):1224–1233

    Article  CAS  PubMed  Google Scholar 

  • Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Invest 25(3):268–288

    Article  CAS  PubMed  Google Scholar 

  • Broedel O, Eravci M, Fuxius S, Smolarz T, Jeitner A, Grau H, Stoltenburg-Didinger G, Plueckhan H, Meinhold H, Baumgartner A (2003) Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain. Am J Physiol Endocrinol Metab 285(3):E470–E480

    Article  CAS  PubMed  Google Scholar 

  • Charli JL, Vargas MA, Cisneros M, de Gortari P, Baeza MA, Jasso P, Bourdais J, Perez L, Uribe RM, Joseph-Bravo P (1998) TRH inactivation in the extracellular compartment: role of pyroglutamyl peptidase II. Neurobiology (Bp) 6(1):45–57

    CAS  PubMed  Google Scholar 

  • Coppola A, Meli R, Diano S (2005) Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology 146(6):2827–2833

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Charli JL, Vargas MA, Joseph-Bravo P (1991) Neuronal localization of pyroglutamate aminopeptidase II in primary cultures of fetal mouse brain. J Neurochem 56(5):1594–1601

    Article  CAS  PubMed  Google Scholar 

  • Cruz R, Chavez-Gutierrez L, Joseph-Bravo P, Charli JL (2004) 3,3′,5′-triiodo-L-thyronine reduces efficiency of mRNA knockdown by antisense oligodeoxynucleotides: a study with pyroglutamyl aminopeptidase II in adenohypophysis. Oligonucleotides 14(3):176–190

    CAS  PubMed  Google Scholar 

  • Diano S, Naftolin F, Goglia F, Horvath TL (1998) Fasting-induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 139(6):2879–2884

    Article  CAS  PubMed  Google Scholar 

  • Diano S, Leonard JL, Meli R, Esposito E, Schiavo L (2003) Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Res 976(1):130–134

    Article  CAS  PubMed  Google Scholar 

  • Dratman MB, Crutchfield FL, Futaesaku Y, Goldberger ME, Murray M (1987) [125I] triiodothyronine in the rat brain: evidence for neural localization and axonal transport derived from thaw-mount film autoradiography. J Comp Neurol 260(3):392–408

    Article  CAS  PubMed  Google Scholar 

  • Ebling FJP, Lewis JE (2018) Tanycytes and hypothalamic control of energy metabolism. Glia 66(6):1176–1184

    Article  PubMed  Google Scholar 

  • Farkas E, Varga E, Kovacs B, Szilvasy-Szabo A, Cote-Velez A, Peterfi Z, Matziari M, Toth M, Zelena D, Mezricky Z, Kadar A, Kovari D, Watanabe M, Kano M, Mackie K, Rozsa B, Ruska Y, Toth B, Mate Z, Erdelvi F, Szabo G, Gereben B, Lechan RM, Charli JL, Joseph-Bravo P, Fekete C (2020) A glial-neuronal circuit in the median eminence regulates thyrotropin-releasing hormone release via the endocannabinoid system. iScience 23(3):100921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete C, Lechan RM (2007) Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 28(2-3):97–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete C, Lechan RM (2014) Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35(2):159–194

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Gereben B, Doleschall M, Harney JW, Dora JM, Bianco AC, Sarkar S, Liposits Z, Rand W, Emerson C, Kacskovics I, Larsen PR, Lechan RM (2004) Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology 145(4):1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Sarkar S, Christoffolete MA, Emerson CH, Bianco AC, Lechan RM (2005) Bacterial lipopolysaccharide (LPS)-induced type 2 iodothyronine deiodinase (D2) activation in the mediobasal hypothalamus (MBH) is independent of the LPS-induced fall in serum thyroid hormone levels. Brain Res 1056(1):97–99

    Article  CAS  PubMed  Google Scholar 

  • Fonseca TL, Correa-Medina M, Campos MP, Wittmann G, Werneck-de-Castro JP, Arrojo e Drigo R, Mora-Garzon M, Ueta CB, Caicedo A, Fekete C, Gereben B, Lechan RM, Bianco AC (2013) Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest 123(4):1492–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas BC, Gereben B, Castillo M, Kallo I, Zeold A, Egri P, Liposits Z, Zavacki AM, Maciel RM, Jo S, Singru P, Sanchez E, Lechan RM, Bianco AC (2010) Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 120(6):2206–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen GA, Solberg LA Jr (1974) Brain and cerebrospinal fluid permeability to intravenous thyroid hormones. Endocrinology 95(5):1398–1410

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162(7):3749–3752

    Article  CAS  PubMed  Google Scholar 

  • Hrabovszky E, Wittmann G, Turi GF, Liposits Z, Fekete C (2005) Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology 146(1):341–347

    Article  CAS  PubMed  Google Scholar 

  • Joseph-Bravo P, Jaimes-Hoy L, Charli JL (2016) Advances in TRH signaling. Rev Endocr Metab Disord 17(4):545–558

    Article  CAS  PubMed  Google Scholar 

  • Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R (2016) Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct 221(9):4411–4427

    Article  CAS  PubMed  Google Scholar 

  • Kakucska I, Rand W, Lechan RM (1992) Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology 130(5):2845–2850

    Article  CAS  PubMed  Google Scholar 

  • Kallo I, Mohacsik P, Vida B, Zeold A, Bardoczi Z, Zavacki AM, Farkas E, Kadar A, Hrabovszky E, Arrojo EDR, Dong L, Barna L, Palkovits M, Borsay BA, Herczeg L, Lechan RM, Bianco AC, Liposits Z, Fekete C, Gereben B (2012) A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One 7(6):e37860

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazcano I, Cabral A, Uribe RM, Jaimes-Hoy L, Perello M, Joseph-Bravo P, Sanchez-Jaramillo E, Charli JL (2015) Fasting enhances pyroglutamyl peptidase II activity in tanycytes of the mediobasal hypothalamus of male adult rats. Endocrinology 156(7):2713–2723

    Article  CAS  PubMed  Google Scholar 

  • Lechan RM, Qi Y, Jackson IM, Mahdavi V (1994) Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 135(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Lechan RM, Hollenberg A, Fekete C (2009) Hypothalamic-pituitary-thyroid axis: organization, neural/endocrine control of TRH. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, New York, pp 75–87

    Chapter  Google Scholar 

  • Leonard JL, Kaplan MM, Visser TJ, Silva JE, Larsen PR (1981) Cerebral cortex responds rapidly to thyroid hormones. Science 214(4520):571–573

    Article  CAS  PubMed  Google Scholar 

  • Marsili A, Sanchez E, Singru P, Harney JW, Zavacki AM, Lechan RM, Larsen PR (2011) Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. J Endocrinol 211(1):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohacsik P, Fuzesi T, Doleschall M, Szilvasy-Szabo A, Vancamp P, Hadadi E, Darras VM, Fekete C, Gereben B (2016a) Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus. Endocrinology 157(3):1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Mohacsik P, Lechan RM, Gereben B, Fekete C (2016b) Infection-induced increase in type 2 deiodinase expression is accompanied by an increase in thyroid hormone action in the mediobasal hypothalamus. Abstracts of the 98th annual meeting of the endocrine society

    Google Scholar 

  • Mohacsik P, Erdelyi F, Baranyi M, Botz B, Szabo G, Toth M, Haltrich I, Helyes Z, Sperlagh B, Toth Z, Sinko R, Lechan RM, Bianco AC, Fekete C, Gereben B (2018) A transgenic mouse model for detection of tissue-specific thyroid hormone action. Endocrinology 159(2):1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Muller-Fielitz H, Stahr M, Bernau M, Richter M, Abele S, Krajka V, Benzin A, Wenzel J, Kalies K, Mittag J, Heuer H, Offermanns S, Schwaninger M (2017) Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat Commun 8(1):484

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy M, Jethwa PH, Warner A, Barrett P, Nilaweera KN, Brameld JM, Ebling FJ (2012) Effects of manipulating hypothalamic triiodothyronine concentrations on seasonal body weight and torpor cycles in Siberian hamsters. Endocrinology 153(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452(7185):317–322

    Article  CAS  PubMed  Google Scholar 

  • Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, Gallet S, Balland E, Malone SA, Pralong F, Cagnoni G, Schellino R, De Marchis S, Mazzone M, Pasterkamp RJ, Tamagnone L, Prevot V, Giacobini P (2015) Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 6:6385

    Article  CAS  PubMed  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94(3):809–819

    Article  CAS  PubMed  Google Scholar 

  • Riskind PN, Kolodny JM, Larsen PR (1987) The regional hypothalamic distribution of type II 5′-monodeiodinase in euthyroid and hypothyroid rats. Brain Res 420(1):194–198

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N (2008) Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 149(12):6251–6261

    Article  CAS  PubMed  Google Scholar 

  • Rocchi R, Kimura H, Tzou SC, Suzuki K, Rose NR, Pinchera A, Ladenson PW, Caturegli P (2007) Toll-like receptor-MyD88 and Fc receptor pathways of mast cells mediate the thyroid dysfunctions observed during nonthyroidal illness. Proc Natl Acad Sci USA 104(14):6019–6024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez E, Guerra M, Peruzzo B, Blazquez JL (2019) Tanycytes: a rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 31(3):e12690

    Article  PubMed  Google Scholar 

  • Ross AW, Johnson CE, Bell LM, Reilly L, Duncan JS, Barrett P, Heideman PD, Morgan PJ (2009) Divergent regulation of hypothalamic neuropeptide Y and agouti-related protein by photoperiod in F344 rats with differential food intake and growth. J Neuroendocrinol 21(7):610–619

    Article  CAS  PubMed  Google Scholar 

  • Sanchez E, Singru PS, Fekete C, Lechan RM (2008) Induction of type 2 iodothyronine deiodinase in the mediobasal hypothalamus by bacterial lipopolysaccharide: role of corticosterone. Endocrinology 149(5):2484–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli JL, Lechan RM (2009) Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology 150(5):2283–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez E, Singru PS, Wittmann G, Nouriel SS, Barrett P, Fekete C, Lechan RM (2010) Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology 151(8):3827–3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano-Lozano A, Montiel M, Morell M, Morata P (1993) 5′ Deiodinase activity in brain regions of adult rats: modifications in different situations of experimental hypothyroidism. Brain Res Bull 30(5-6):611–616

    Article  CAS  PubMed  Google Scholar 

  • Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P (2016) Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 64(3):425–439

    Article  PubMed  Google Scholar 

  • Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM (1997) Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138(8):3359–3368

    Article  CAS  PubMed  Google Scholar 

  • von Bartheld CS, Williams R, Lefcort F, Clary DO, Reichardt LF, Bothwell M (1996) Retrograde transport of neurotrophins from the eye to the brain in chick embryos: roles of the p75NTR and trkB receptors. J Neurosci 16(9):2995–3008

    Article  Google Scholar 

  • Watson FL, Heerssen HM, Moheban DB, Lin MZ, Sauvageot CM, Bhattacharyya A, Pomeroy SL, Segal RA (1999) Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J Neurosci 19(18):7889–7900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann G, Lechan RM (2018) Prss56 expression in the rodent hypothalamus: inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes. J Comp Neurol 526(15):2444–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann G, Deli L, Kallo I, Hrabovszky E, Watanabe M, Liposits Z, Fekete C (2007) Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus. J Comp Neurol 503(2):270–279

    Article  CAS  PubMed  Google Scholar 

  • Wittmann G, Farkas E, Szilvasy-Szabo A, Gereben B, Fekete C, Lechan RM (2017) Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk. J Comp Neurol 525(3):411–441

    Article  CAS  PubMed  Google Scholar 

  • Wrutniak C, Rochard P, Casas F, Fraysse A, Charrier J, Cabello G (1998) Physiological importance of the T3 mitochondrial pathway. Ann NY Acad Sci 15:93–100

    Article  Google Scholar 

  • Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T (2006) T(3) implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res 324(1):175–179

    Article  CAS  PubMed  Google Scholar 

  • Zeold A, Doleschall M, Haffner MC, Capelo LP, Menyhert J, Liposits Z, da Silva WS, Bianco AC, Kacskovics I, Fekete C, Gereben B (2006) Characterization of the nuclear factor-kappa B responsiveness of the human dio2 gene. Endocrinology 147(9):4419–4429

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Recommended Reading

  • Rodriguez-Rodriguez A, Lazcano I, Sanchez-Jarmillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli J-L (2019) Tanycytes and the control of thyrotropin-releasing hormone flux into portal capillaries. Front Endocrinol 10:m1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Lechan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lechan, R.M., Fekete, C. (2021). Tanycyte Regulation of Hypophysiotropic TRH Neurons. In: Tasker, J.G., Bains, J.S., Chowen, J.A. (eds) Glial-Neuronal Signaling in Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-62383-8_12

Download citation

Publish with us

Policies and ethics