Abstract
Generative adversarial networks (GANs) could be used efficiently for image and video generation when labeled training data is available in bulk. In general, building a good machine learning model requires a reasonable amount of labeled training data. However, there are areas such as the biomedical field where the creation of such a dataset is time-consuming and requires expert knowledge. Thus, the aim is to use data augmentation techniques as an alternative to data collection to improve data classification. This paper presents the use of a modified version of a GAN called Gene Expression Generator (GEG) to augment the available data samples. The proposed approach was used to generate synthetic data for binary biomedical datasets to train existing supervised machine learning approaches. Experimental results show that the use of GEG for data augmentation with a modified version of leave one out cross-validation (LOOCV) increases the performance of classification accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
x denotes original (positive) instances, \(x'\) denotes synthetic (negative) instances, z is a random Gaussian noise. D(x) and \(D(x')\) are discriminator’s outputs for original and synthetic instances respectively, and G(z) is the generator’s output.
- 2.
DNA microarray data: https://homes.di.unimi.it/~valentini/DATA/MICROAR-RAY-DATA/.
References
Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. 96(12), 6745–6750 (1999)
Antipov, G., Baccouche, M., Dugelay, J.L.: Face aging with conditional generative adversarial networks. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2089–2093. IEEE (2017)
Berthelot, D., Milanfar, P., Goodfellow, I.: Creating high resolution images with a latent adversarial generator (2020). arXiv preprint arXiv:2003.02365
Buza, K.: Classification of gene expression data: a hubness-aware semi-supervised approach. Comput. Methods Prog. Biomed. 127, 105–113 (2016)
Damian, A., Piciu, L., Turlea, S., Tapus, N.: Advanced customer activity prediction based on deep hierarchic encoder-decoders. In: 2019 22nd International Conference on Control Systems and Computer Science (CSCS), pp. 403–409. IEEE (2019)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Im, D.J., Kim, C.D., Jiang, H., Memisevic, R.: Generating images with recurrent adversarial networks (2016). arXiv preprint arXiv:1602.05110
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Ppattern Recognition, pp. 1125–1134 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Li, C., Alvarez-Melis, D., Xu, K., Jegelka, S., Sra, S.: Distributional adversarial networks (2017). arXiv preprint arXiv:1706.09549
Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43
Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., Jurafsky, D.: Adversarial learning for neural dialogue generation. In: EMNLP (2017)
Lin, W.J., Chen, J.J.: Class-imbalanced classifiers for high-dimensional data. Briefings Bioinf. 14(1), 13–26 (2013)
Lu, Y., Kakillioglu, B., Velipasalar, S.: Autonomously and simultaneously refining deep neural network parameters by a bi-generative adversarial network aided genetic algorithm (2018). arXiv preprint arXiv:1809.10244
Marchesi, M.: Megapixel size image creation using generative adversarial networks (2017). arXiv preprint arXiv:1706.00082
Marouf, M., et al.: Realistic in silico generation and augmentation of single cell RNA-seq data using generative adversarial neural networks. bioRxiv, p. 390153 (2018)
Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). arXiv preprint arXiv:1411.1784
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv preprint arXiv:1511.06434
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis (2016). arXiv preprint arXiv:1605.05396
Shang, C., Palmer, A., Sun, J., Chen, K.S., Lu, J., Bi, J.: Vigan: missing view imputation with generative adversarial networks. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 766–775. IEEE (2017)
Smith, E.J., Meger, D.: Improved adversarial systems for 3d object generation and reconstruction. In: Conference on Robot Learning, pp. 87–96 (2017)
Sotiriou, C., et al.: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Nat. Acad. Sci. 100(18), 10393–10398 (2003)
Taan, A., Farou, Z.: Supervised learning methods for skin segmentation classification (2020). https://doi.org/10.13140/RG.2.2.12444.51843/2
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, pp. 613–621 (2016)
Wang, H., Qin, Z., Wan, T.: Text generation based on generative adversarial nets with latent variables. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, Lida (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 92–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93037-4_8
Wang, Z., She, Q., Ward, T.E.: Generative adversarial networks: a survey and taxonomy (2019). arXiv preprint arXiv:1906.01529
Zhang, H.: Generative Adversarial Networks for Image Synthesis. Ph.D. thesis, Rutgers The State University of New Jersey-New Brunswick and University of Medicine and Dentistry of New Jersey (2019)
Zhang, Y., Bai, Y., Ding, M., Ghanem, B.: Multi-task generative adversarial network for detecting small objects in the wild. Int. J. Comput. Vis. 128, 1–19 (2020). https://doi.org/10.1007/s11263-020-01301-6
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgments
This work was supported by the Telekom Innovation Laboratories (T-Labs) and the Research and Development unit of Deutsche Telekom.
The authors would like to express their deepest gratitude towards Tsegaye Misikir Tashu for his advice, valuable feedback, proofreading and assistance in overcoming technical problems.
Project no. ED_18-1-2019-0030 (Application domain specific highly reliable IT solutions subprogramme) has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Farou, Z., Mouhoub, N., Horváth, T. (2020). Data Generation Using Gene Expression Generator. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-62365-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62364-7
Online ISBN: 978-3-030-62365-4
eBook Packages: Computer ScienceComputer Science (R0)