Acs, G., Castelluccia, C., Chen, R.: Differentially private histogram publishing through lossy compression. In: 2012 IEEE 12th International Conference on Data Mining, pp. 1–10. IEEE (2012)
Google Scholar
Asghar, H.J., Ding, M., Rakotoarivelo, T., Mrabet, S., Kaafar, D.: Differentially private release of datasets using Gaussian copula. J. Priv. Confidentiality 10(2) June 2020
Google Scholar
Baak, M., Koopman, R., Snoek, H., Klous, S.: A new correlation coefficient between categorical, ordinal and interval variables with pearson characteristics. Comput. Stat. Data Anal. 152, 107043 (2020)
MathSciNet
CrossRef
Google Scholar
Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 273–282 (2007)
Google Scholar
Bowen, C.M., Snoke, J.: Comparative study of differentially private synthetic data algorithms and evaluation standards (2019). arXiv preprint arXiv:1911.12704
Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially private spatial decompositions. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 20–31. IEEE (2012)
Google Scholar
Cormode, G., Procopiuc, C., Srivastava, D., Tran, T.T.: Differentially private summaries for sparse data. In: Proceedings of the 15th International Conference on Database Theory, pp. 299–311 (2012)
Google Scholar
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
CrossRef
Google Scholar
Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput.Sci. 9(3–4), 211–407 (2014)
MathSciNet
MATH
Google Scholar
Hittmeir, M., Ekelhart, A., Mayer, R.: On the utility of synthetic data: an empirical evaluation on machine learning tasks. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, pp. 1–6 (2019)
Google Scholar
Howe, B., Stoyanovich, J., Ping, H., Herman, B., Gee, M.: Synthetic data for social good (2017). arXiv preprint arXiv:1710.08874
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press, Cambridge (2009)
MATH
Google Scholar
Li, H., Xiong, L., Jiang, X.: Differentially private synthesization of multi-dimensional data using copula functions. In: Advances in Database Technology: Proceedings. International Conference on Extending Database Technology, vol. 2014, p. 475. NIH Public Access (2014)
Google Scholar
Li, H., Xiong, L., Zhang, L., Jiang, X.: Dpsynthesizer: differentially private data synthesizer for privacy preserving data sharing. In: Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, vol. 7, p. 1677. NIH Public Access (2014)
Google Scholar
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE (2007)
Google Scholar
Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). pp. 399–410, IEEE (2016)
Google Scholar
Ping, H., Stoyanovich, J., Howe, B.: Datasynthesizer: privacy-preserving synthetic datasets. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management, pp. 1–5 (2017)
Google Scholar
Sklar, A.: mfonctions de répartition à n dimensions et leurs marges, n publ. Inst. Statist. Univ. Paris 8, 229–231 (1959)
Google Scholar
Tsybakov, A.B.: Introduction to Nonparametric Estimation. Springer Science & Business Media, Berlin (2008)
MATH
Google Scholar
Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200–1214 (2010)
CrossRef
Google Scholar
Zhang, J., Zheng, K., Mou, W., Wang, L.: Efficient private ERM for smooth objectives. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 3922–3928. AAAI Press (2017)
Google Scholar
Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: private data release via bayesian networks. ACM Trans. Data. Syst. (TODS) 42(4), 1–41 (2017)
MathSciNet
CrossRef
Google Scholar
Zhang, J., Xiao, X., Yang, Y., Zhang, Z., Winslett, M.: Privgene: differentially private model fitting using genetic algorithms. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 665–676 (2013)
Google Scholar