Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
MathSciNet
MATH
Google Scholar
Bergstra, J., Rémi B., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Neural Information Processing Systems, pp. 2546–2554 (2011)
Google Scholar
Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and maxent discriminative reranking. In: Annual Meeting on Association for Computational Linguistics, pp. 173–180. ACL 2005 (2005)
Google Scholar
Deng, L., Li, X.: Machine learning paradigms for speech recognition: an overview. Trans. Audio Speech Lang. Process. 21(5), 1060–1089 (2013)
CrossRef
Google Scholar
Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter optimization via meta-learning. In: AAAI Conference on Artificial Intelligence (2015)
Google Scholar
Guo, G., Li, S.Z., Chan, K.: Face recognition by support vector machines. In: International Conference on Automatic Face and Gesture Recognition (2000)
Google Scholar
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40
CrossRef
Google Scholar
Jamieson, P., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. AISTATS (2015)
Google Scholar
Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, Department of Computer Science, University of Toronto (2009)
Google Scholar
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
CrossRef
Google Scholar
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. In: ICLR (2017)
Google Scholar
Moshkelgosha, V., Behzadi-Khormouji, H., Yazdian-Dehkordi, M.: Coarse-to-fine parameter tuning for content-based object categorization. In: International Conference on Pattern Recognition and Image Analysis (IPRIA), pp. 160–165. IEEE (2017)
Google Scholar
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, YA.: Reading digits in natural images with unsupervised feature learning. In: NIPS (2011)
Google Scholar
Rejani, Y.I.A., Selvi, S.T.: Early detection of breast cancer using SVM classifier technique. CoRR abs/0912.2314 (2009)
Google Scholar
Rolland, P., Scarlett, J., Bogunovic, I., Cevher, V.: High-dimensional bayesian optimization via additive models with overlapping groups. AISTATS (2018)
Google Scholar
Sadeghi, A., Graux, D., Yazdi, H.S., Lehmann, J.: MDE: multi distance embeddings for link prediction in knowledge graphs. In: 24th European Conference on Artificial Intelligence (ECAI) (2020)
Google Scholar
Snoek, J., Larochelle, H., Adams, R.: Practical bayesian optimization of machine learning algorithms. In: Neural Information Processing Systems (NIPS) (2012)
Google Scholar
Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)
CrossRef
Google Scholar
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)