Skip to main content

Entity Typing Based on RDF2Vec Using Supervised and Unsupervised Methods

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12124)

Abstract

Knowledge Graphs have been recognized as the foundation for diverse applications in the field of data mining, information retrieval, and natural language processing. So the completeness and the correctness of the KGs are of high importance. The type information of the entities in a KG, is one of the most vital facts. However, it has been observed that type information is often noisy or incomplete. In this work, the task of fine-grained entity typing is addressed by exploiting the pre-trained RDF2Vec vectors using supervised and unsupervised approaches.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62327-2_35
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-62327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Notes

  1. 1.

    https://wiki.dbpedia.org/downloads-2016-10.

  2. 2.

    https://zenodo.org/record/1320211#.Xbnwf25FydI.

  3. 3.

    https://github.com/ISE-FIZKarlsruhe/DBpedia-Entity-Typing-with-RDF2Vec.

  4. 4.

    http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_sdtyped_dbo_en.ttl.bz2.

References

  1. Biswas, R., Türker, R., Moghaddam, F.B., Koutraki, M., Sack, H.: Wikipedia infobox type prediction using embeddings. In: Proceedings of the 1st Workshop on Deep Learning for Knowledge Graphs and Semantic Technologies DL4KGS 2018. CEUR Workshop Proceedings (2018)

    Google Scholar 

  2. Jin, H., Hou, L., Li, J., Dong, T.: Attributed and predictive entity embedding for fine-grained entity typing in knowledge bases. In: Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics (2018)

    Google Scholar 

  3. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on EMNLP. Association for Computational Linguistics (2014)

    Google Scholar 

  4. Kliegr, T., Zamazal, O.: LHD 2.0: a text mining approach to typing entities in knowledge graphs. J. Web Semant. 39, 47–61 (2016)

    CrossRef  Google Scholar 

  5. Melo, A., Paulheim, H., Völker, J.: Type prediction in RDF knowledge bases using hierarchical multilabel classification. In: Proceedings of the 6th International Conference on WIMS 2016. Association for Computing Machinery (2016)

    Google Scholar 

  6. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_32

    CrossRef  Google Scholar 

  7. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P.P., et al. (eds.) ISWC 2016, Part I. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radina Sofronova or Russa Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sofronova, R., Biswas, R., Alam, M., Sack, H. (2020). Entity Typing Based on RDF2Vec Using Supervised and Unsupervised Methods. In: , et al. The Semantic Web: ESWC 2020 Satellite Events. ESWC 2020. Lecture Notes in Computer Science(), vol 12124. Springer, Cham. https://doi.org/10.1007/978-3-030-62327-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62327-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62326-5

  • Online ISBN: 978-3-030-62327-2

  • eBook Packages: Computer ScienceComputer Science (R0)