Skip to main content

LinkedPipes Applications - Automated Discovery of Configurable Linked Data Applications

  • 450 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12124)


Consumption of Linked Data (LD) is a far less explored problem than its production. LinkedPipes Applications (LP-APPs) is a platform enabling data analysts and data journalists to easily create LD based applications such as, but not limited to, visualizations. It builds on our previous research regarding the automatic discovery of possible visualizations of LD. The approach was based on the matching of classes and predicates used in the data, e.g. in a form of a data sample, to what an application or visualization expects, e.g. in a form of a SPARQL query, solving potential mismatches in data by dynamically applying data transformers. In this demo, we present a platform that allows a data analyst to automatically discover possible visualizations of a given LD data source using this method and the applications contained in the platform. Next, the data analyst is able to configure the discovered visualization application and publish it or embed it in an arbitrary web page. Thanks to the configuration being stored in their Solid POD, multiple analysts are able to collaborate on a single application in a decentralized fashion. The resulting visualization application can be kept up to date via scheduling an ETL pipeline, regularly refreshing the underlying data.


  • Linked data
  • Consumption
  • Visualization
  • Application
  • Solid

This work was supported by the Czech Science Foundation (GAČR), grant number 19-01641S.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62327-2_25
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-62327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.


  1. 1.

  2. 2.

  3. 3.

  4. 4.


  1. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Seman. Comput. 4(1), 3–25 (2010).

    CrossRef  MATH  Google Scholar 

  2. Bizer, C., Heath, T., Auer, S., Berners-Lee, T. (eds.): Proceedings of the Workshop on Linked Data on the Web Co-located with the 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, 8 April 2014, CEUR Workshop Proceedings, vol. 1184. (2014).

  3. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Bizer, et al. [2].

  4. Ellefi, M.B., et al.: RDF dataset profiling - a survey of features, methods, vocabularies and applications. Seman. Web 9(5), 677–705 (2018).

    CrossRef  Google Scholar 

  5. Hausenblas, M., Cyganiak, R., Alexander, K., Zhao, J.: Describing Linked Datasets with the VoID Vocabulary. W3C note, W3C, March 2011.

  6. Helmich, J., Potoček, T., Klímek, J., Nečaský, M.: Towards easier visualization of linked data for lay users. In: Akerkar, R., Cuzzocrea, A., Cao, J., Hacid, M. (eds.) Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, WIMS 2017, Amantea, Italy, 19–22 June 2017, pp. 12:1–12:9. ACM (2017).

  7. Indrawan-Santiago, M., Steinbauer, M., Salvadori, I.L., Khalil, I., Anderst-Kotsis, G. (eds.): Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services, iiWAS 2017, Salzburg, Austria, 4–6 December 2017. ACM (2017).

  8. Khalili, A., de Graaf, K.A.: Linked data reactor: towards data-aware user interfaces. In: Proceedings of the 13th International Conference on Semantic Systems. p. 168–172. Semantics 2017, Association for Computing Machinery, New York, NY, USA (2017).

  9. Klímek, J., Škoda, P.: LinkedPipes ETL in use: practical publication and consumption of linked data. In: Indrawan-Santiago et al. [7], pp. 441–445.

  10. Klímek, J., Škoda, P., Nečaský, M.: Survey of tools for linked data consumption. Seman. Web 10(4), 665–720 (2019).

    CrossRef  Google Scholar 

  11. Mansour, E., et al.: A demonstration of the solid platform for social web applications. In: Proceedings of the 25th International Conference Companion on World Wide Web. WWW 2016 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 223–226 (2016).

  12. Nečaský, M., Helmich, J., Klímek, J.: Platform for automated previews of linked data. In: Indrawan-Santiago et al. [7], pp. 395–404.

  13. Verborgh, R., Sande, M.V., Colpaert, P., Coppens, S., Mannens, E., de Walle, R.V.: Web-scale querying through linked data fragments. In: Bizer et al. [2].

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jakub Klímek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Klímek, J. et al. (2020). LinkedPipes Applications - Automated Discovery of Configurable Linked Data Applications. In: , et al. The Semantic Web: ESWC 2020 Satellite Events. ESWC 2020. Lecture Notes in Computer Science(), vol 12124. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62326-5

  • Online ISBN: 978-3-030-62327-2

  • eBook Packages: Computer ScienceComputer Science (R0)