Skip to main content

Jejunoileal Neuroendocrine Tumors

  • Chapter
  • First Online:
Neuroendocrine Tumors

Abstract

Jejunoileal or small bowel neuroendocrine tumors (SBNETs), as with neuroendocrine tumors arising from other anatomic locations, are increasing in incidence. Given the small intestine’s relative inaccessibility to endoscopy and the fact that SBNETs are frequently small, they often elude preoperative identification. Nodal and liver metastases are common at the time of diagnosis. The majority of SBNETs are low grade with slow growth, and with optimal treatment patients can survive for many years, even with metastatic disease. Definitive management includes surgery to remove the primary tumor, associated nodal tissue, and distant metastases, when feasible. For unresectable or recurrent disease, an ever-increasing range of medical therapies including somatostatin analogues, peptide receptor radionuclide therapy, and targeted molecular inhibitors can delay progression and potentially extend survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. Jun 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  2. Bilimoria KY, Bentrem DJ, Wayne JD, Ko CY, Bennett CL, Talamonti MS. Small bowel cancer in the United States: changes in epidemiology, treatment, and survival over the last 20 years. Ann Surg. Jan 2009;249(1):63–71.

    Article  PubMed  Google Scholar 

  3. Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keck KJ, Maxwell JE, Menda Y, et al. Identification of primary tumors in patients presenting with metastatic gastroenteropancreatic neuroendocrine tumors. Surgery. 2017;161(1):272–9.

    Article  PubMed  Google Scholar 

  5. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–97.

    Article  PubMed  Google Scholar 

  6. Fraenkel M, Kim M, Faggiano A, de Herder WW, Valk GD, Knowledge N. Incidence of gastroenteropancreatic neuroendocrine tumours: a systematic review of the literature. Endocr Relat Cancer. 2014;21(3):R153–63.

    Article  CAS  PubMed  Google Scholar 

  7. Hemminki K, Li X. Incidence trends and risk factors of carcinoid tumors: a nationwide epidemiologic study from Sweden. Cancer. 2001;92(8):2204–10.

    Article  CAS  PubMed  Google Scholar 

  8. Pasquer A, Walter T, Hervieu V, et al. Surgical management of small bowel neuroendocrine tumors: specific requirements and their impact on staging and prognosis. Ann Surg Oncol. 2015;22(Suppl 3):S742–9.

    Article  PubMed  Google Scholar 

  9. Gangi A, Siegel E, Barmparas G, et al. Multifocality in small bowel neuroendocrine tumors. J Gastrointest Surg. 2018;22(2):303–9.

    Article  PubMed  Google Scholar 

  10. Keck KJ, Maxwell JE, Utria AF, et al. The distal predilection of small bowel neuroendocrine tumors. Ann Surg Oncol. 2018;25(11):3207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi AB, Maxwell JE, Keck KJ, et al. Is multifocality an indicator of aggressive behavior in small bowel neuroendocrine tumors? Pancreas. 2017;46(9):1115–20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Francis JM, Kiezun A, Ramos AH, et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet. 2013;45(12):1483–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128(6):1717–51.

    Article  PubMed  Google Scholar 

  14. Kytola S, Hoog A, Nord B, et al. Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol. 2001;158(5):1803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashemi J, Fotouhi O, Sulaiman L, et al. Copy number alterations in small intestinal neuroendocrine tumors determined by array comparative genomic hybridization. BMC Cancer. 2013;13:505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Stålberg P, Westin G, Thirlwell C. Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med. 2016;280(6):584–94.

    Article  PubMed  CAS  Google Scholar 

  17. Kulke MH, Freed E, Chiang DY, et al. High-resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes Cancer. 2008;47(7):591–603.

    Article  CAS  PubMed  Google Scholar 

  18. Banck MS, Kanwar R, Kulkarni AA, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 2013;123(6):2502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maxwell JE, Sherman SK, Li G, et al. Somatic alterations of CDKN1B are associated with small bowel neuroendocrine tumors. Cancer Genet. Sep 15 2015.

    Google Scholar 

  20. Sei Y, Zhao X, Forbes J, et al. A hereditary form of small intestinal carcinoid associated with a Germline mutation in inositol polyphosphate multikinase. Gastroenterology. 2015;149(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  21. Karpathakis A, Dibra H, Pipinikas C, et al. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin Cancer Res. 2016;22(1):250–8.

    Article  CAS  PubMed  Google Scholar 

  22. Thorson A, Biorck G, Bjorkman G, Waldenstrom J. Malignant carcinoid of the small intestine with metastases to the liver, valvular disease of the right side of the heart (pulmonary stenosis and tricuspid regurgitation without septal defects), peripheral vasomotor symptoms, bronchoconstriction, and an unusual type of cyanosis; a clinical and pathologic syndrome. Am Heart J. 1954;47(5):795–817.

    Article  CAS  PubMed  Google Scholar 

  23. Scott AT, Howe JR. Management of small bowel neuroendocrine tumors. J Oncol Pract. 2018;14(8):471–82.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vinik AI, Silva MP, Woltering EA, Go VL, Warner R, Caplin M. Biochemical testing for neuroendocrine tumors. Pancreas. 2009;38(8):876–89.

    Article  PubMed  Google Scholar 

  25. Scott AT, Howe JR. Management of small bowel neuroendocrine tumors. Surg Oncol Clin N Am. 2020;29(2):223–41.

    Article  PubMed  Google Scholar 

  26. Dahdaleh FS, Lorenzen A, Rajput M, et al. The value of preoperative imaging in small bowel neuroendocrine tumors. Ann Surg Oncol. 2013;20(6):1912–7.

    Article  PubMed  Google Scholar 

  27. Pape UF, Perren A, Niederle B, et al. ENETS consensus guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology. 2012;95(2):135–56.

    Article  CAS  PubMed  Google Scholar 

  28. Klimstra DS, Modlin IR, Adsay NV, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol. 2010;34(3):300–13.

    Article  PubMed  Google Scholar 

  29. Maxwell JE, Sherman SK, Stashek KM, O’Dorisio TM, Bellizzi AM, Howe JR. A practical method to determine the site of unknown primary in metastatic neuroendocrine tumors. Surgery. 2014;156(6):1359–65; discussion 1365–1356

    Article  PubMed  Google Scholar 

  30. Vinik AI, Chaya C. Clinical presentation and diagnosis of neuroendocrine Tumors. Hematol Oncol Clin North Am. 2016;30(1):21–48.

    Article  PubMed  Google Scholar 

  31. Tran CG, Sherman SK, Howe JR. Small bowel neuroendocrine tumors. Curr Probl Surg. 2020.

    Google Scholar 

  32. Maxwell JE, O’Dorisio TM, Howe JR. Biochemical diagnosis and preoperative imaging of Gastroenteropancreatic neuroendocrine tumors. Surg Oncol Clin N Am. 2016;25(1):171–94.

    Article  PubMed  Google Scholar 

  33. Condron ME, Jameson NE, Limbach KE, et al. A prospective study of the pathophysiology of carcinoid crisis. Surgery. 2019;165(1):158–65.

    Article  PubMed  Google Scholar 

  34. Shah MH, Goldner WS, Halfdanarson TR, et al. NCCN guidelines insights: neuroendocrine and adrenal tumors, version 2.2018. J Natl Compr Cancer Netw. 2018;16(6):693–702.

    Article  CAS  Google Scholar 

  35. Arnold R, Wilke A, Rinke A, et al. Plasma chromogranin a as marker for survival in patients with metastatic endocrine gastroenteropancreatic tumors. Clin Gastroenterol Hepatol. 2008;6(7):820–7.

    Article  CAS  PubMed  Google Scholar 

  36. Tran CG, Sherman SK, Scott AT, et al. It’s time to rethink biomarkers for surveillance of small bowel neuroendocrine tumors. Ann Surg Oncol. 2020.

    Google Scholar 

  37. Woltering EA, Voros BA, Thiagarajan R, et al. Plasma Neurokinin A levels predict survival in well-differentiated neuroendocrine Tumors of the small bowel. Pancreas. 2018;47(7):843–8.

    Article  CAS  PubMed  Google Scholar 

  38. O’Dorisio TM, Krutzik SR, Woltering EA, et al. Development of a highly sensitive and specific carboxy-terminal human pancreastatin assay to monitor neuroendocrine tumor behavior. Pancreas. 2010;39(5):611–6.

    Article  PubMed  CAS  Google Scholar 

  39. Sherman SK, Maxwell JE, O’Dorisio MS, O’Dorisio TM, Howe JR. Pancreastatin predicts survival in neuroendocrine tumors. Ann Surg Oncol. 2014;21(9):2971–80.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Woltering EA, Voros BA, Beyer DT, et al. Plasma Pancreastatin predicts the outcome of surgical Cytoreduction in neuroendocrine tumors of the small bowel. Pancreas. 2019;48(3):356–62.

    Article  PubMed  Google Scholar 

  41. Strosberg D, Schneider EB, Onesti J, et al. Prognostic impact of serum Pancreastatin following chemoembolization for neuroendocrine tumors. Ann Surg Oncol. 2018;25(12):3613–20.

    Article  PubMed  Google Scholar 

  42. Khan TM, Garg M, Warner RR, Uhr JH, Divino CM. Elevated serum Pancreastatin is an indicator of hepatic metastasis in patients with small bowel neuroendocrine tumors. Pancreas. 2016;45(7):1032–5.

    Article  CAS  PubMed  Google Scholar 

  43. Sundin A, Arnold R, Baudin E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging. Neuroendocrinology. 2017;105(3):212–44.

    Article  CAS  PubMed  Google Scholar 

  44. Pilleul F, Penigaud M, Milot L, Saurin JC, Chayvialle JA, Valette PJ. Possible small-bowel neoplasms: contrast-enhanced and water-enhanced multidetector CT enteroclysis. Radiology. 2006;241(3):796–801.

    Article  PubMed  Google Scholar 

  45. Dromain C, de Baere T, Lumbroso J, et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol. 2005;23(1):70–8.

    Article  PubMed  Google Scholar 

  46. Kunz PL, Reidy-Lagunes D, Anthony LB, et al. Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas. 2013;42(4):557–77.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amzallag-Bellenger E, Soyer P, Barbe C, Diebold MD, Cadiot G, Hoeffel C. Prospective evaluation of magnetic resonance enterography for the detection of mesenteric small bowel tumours. Eur Radiol. 2013;23(7):1901–10.

    Article  PubMed  Google Scholar 

  48. Masselli G, Di Tola M, Casciani E, et al. Diagnosis of small-bowel diseases: prospective comparison of multi-detector row CT enterography with MR enterography. Radiology. 2016;279(2):420–31.

    Article  PubMed  Google Scholar 

  49. Howe JR, Cardona K, Fraker DL, et al. The surgical management of small bowel neuroendocrine tumors: Consensus guidelines of the North American Neuroendocrine Tumor Society. Pancreas. 2017;46(6):715–31.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hope TA, Bergsland EK, Bozkurt MF, et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med. 2018;59(1):66–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maxwell JE, Sherman SK, Menda Y, Wang D, O’Dorisio TM, Howe JR. Limitations of somatostatin scintigraphy in primary small bowel neuroendocrine tumors. J Surg Res. 2014;190(2):548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naswa N, Sharma P, Kumar A, et al. Gallium-68-DOTA-NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: a prospective single-center study. AJR Am J Roentgenol. 2011;197(5):1221–8.

    Article  PubMed  Google Scholar 

  53. Deppen SA, Blume J, Bobbey AJ, et al. 68Ga-DOTATATE compared with 111In-DTPA-Octreotide and conventional imaging for pulmonary and Gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. J Nucl Med. 2016;57(6):872–8.

    Article  CAS  PubMed  Google Scholar 

  54. Waser B, Rehmann R, Sanchez C, Fourmy D, Reubi JC. Glucose-dependent insulinotropic polypeptide receptors in most gastroenteropancreatic and bronchial neuroendocrine tumors. J Clin Endocrinol Metab. 2012;97(2):482–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sherman SK, Carr JC, Wang D, O’Dorisio MS, O’Dorisio TM, Howe JR. Gastric inhibitory polypeptide receptor (GIPR) is a promising target for imaging and therapy in neuroendocrine tumors. Surgery. 2013;154(6):1206–13; discussion 1214

    Article  PubMed  Google Scholar 

  56. Gourni E, Waser B, Clerc P, Fourmy D, Reubi JC, Maecke HR. The glucose-dependent insulinotropic polypeptide receptor: a novel target for neuroendocrine tumor imaging-first preclinical studies. J Nucl Med. 2014;55(6):976–82.

    Article  CAS  PubMed  Google Scholar 

  57. Reubi JC, Maecke HR. Approaches to multireceptor targeting: hybrid radioligands, Radioligand cocktails, and sequential radioligand applications. J Nucl Med. 2017;58(Suppl 2):10S–6S.

    Article  CAS  PubMed  Google Scholar 

  58. Nicolas GP, Morgenstern A, Schottelius M, Fani M. New Developments in Peptide Receptor Radionuclide Therapy. J Nucl Med. Dec 20 2018.

    Google Scholar 

  59. Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108(3):256–64.

    Article  CAS  PubMed  Google Scholar 

  60. Norlen O, Stalberg P, Oberg K, et al. Long-term results of surgery for small intestinal neuroendocrine tumors at a tertiary referral center. World J Surg. 2012;36(6):1419–31.

    Article  PubMed  Google Scholar 

  61. Massimino K, Harrskog O, Pommier S, Pommier R. Octreotide LAR and bolus octreotide are insufficient for preventing intraoperative complications in carcinoid patients. J Surg Oncol. 2013;107(8):842–6.

    Article  CAS  PubMed  Google Scholar 

  62. Woltering EA, Wright AE, Stevens MA, et al. Development of effective prophylaxis against intraoperative carcinoid crisis. J Clin Anesth. 2016;32:189–93.

    Article  CAS  PubMed  Google Scholar 

  63. Limbach KE, Condron ME, Bingham AE, Pommier SJ, Pommier RF. Beta-adrenergic agonist administration is not associated with secondary carcinoid crisis in patients with carcinoid tumor. Am J Surg. 2019;217(5):932–6.

    Article  PubMed  Google Scholar 

  64. Skertich NJ, Gerard J, Poirier J, et al. Do all abdominal neuroendocrine tumors require extended postoperative VTE prophylaxis? A NSQIP Analysis. J Gastrointest Surg. 2019;23(4):788–93.

    Article  PubMed  Google Scholar 

  65. Bartlett EK, Roses RE, Gupta M, et al. Surgery for metastatic neuroendocrine tumors with occult primaries. J Surg Res. 2013;184(1):221–7.

    Article  PubMed  Google Scholar 

  66. Wang SC, Parekh JR, Zuraek MB, et al. Identification of unknown primary tumors in patients with neuroendocrine liver metastases. Arch Surg (Chicago, Ill. 1960). 2010;145(3):276–80.

    Article  Google Scholar 

  67. Massimino KP, Han E, Pommier SJ, Pommier RF. Laparoscopic surgical exploration is an effective strategy for locating occult primary neuroendocrine tumors. Am J Surg. 2012;203(5):628–31.

    Article  PubMed  Google Scholar 

  68. Landry CS, Lin HY, Phan A, et al. Resection of at-risk mesenteric lymph nodes is associated with improved survival in patients with small bowel neuroendocrine tumors. World J Surg. 2013;37(7):1695–700.

    Article  PubMed  Google Scholar 

  69. Scott AT, Breheny PJ, Keck KJ, et al. Effective cytoreduction can be achieved in patients with numerous neuroendocrine tumor liver metastases (NETLMs). Surgery. 2019;165(1):166–75.

    Article  PubMed  Google Scholar 

  70. Wonn SM, Limbach KE, Pommier SJ, et al. Outcomes of cytoreductive operations for peritoneal carcinomatosis with or without liver cytoreduction in patients with small bowel neuroendocrine tumors. Surgery. May 27 2020.

    Google Scholar 

  71. Givi B, Pommier SJ, Thompson AK, Diggs BS, Pommier RF. Operative resection of primary carcinoid neoplasms in patients with liver metastases yields significantly better survival. Surgery. 2006;140(6):891–7; discussion 897–898

    Article  PubMed  Google Scholar 

  72. Ahmed A, Turner G, King B, et al. Midgut neuroendocrine tumours with liver metastases: results of the UKINETS study. Endocr Relat Cancer. 2009;16(3):885–94.

    Article  CAS  PubMed  Google Scholar 

  73. Citterio D, Pusceddu S, Facciorusso A, et al. Primary tumour resection may improve survival in functional well-differentiated neuroendocrine tumours metastatic to the liver. Eur J Surg Oncol. 2017;43(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  74. Howe JR. It may not be too little or too late: resecting primary small bowel neuroendocrine tumors in the presence of metastatic disease. Ann Surg Oncol. Jun 4 2020.

    Google Scholar 

  75. Pommier RF. Re-evaluating resection of primary pancreatic neuroendocrine tumors. Surgery. 2019;165(3):557–8.

    Article  PubMed  Google Scholar 

  76. Daskalakis K, Karakatsanis A, Hessman O, et al. Association of a prophylactic surgical approach to stage IV small intestinal neuroendocrine tumors with survival. JAMA Oncol. 2018;4(2):183–9.

    Article  PubMed  Google Scholar 

  77. Lewis A, Raoof M, Ituarte PHG, et al. Resection of the primary gastrointestinal neuroendocrine tumor improves survival with or without liver treatment. Ann Surg. 2019;270(6):1131–7.

    Article  PubMed  Google Scholar 

  78. Tierney JF, Chivukula SV, Wang X, et al. Resection of primary tumor may prolong survival in metastatic gastroenteropancreatic neuroendocrine tumors. Surgery. 2019;165(3):644–51.

    Article  PubMed  Google Scholar 

  79. Keutgen XM, Schadde E, Pommier RF, Halfdanarson TR, Howe JR, Kebebew E. Metastatic neuroendocrine tumors of the gastrointestinal tract and pancreas: a surgeon’s plea to centering attention on the liver. Semin Oncol. 2018;45(4):232–5.

    Article  PubMed  Google Scholar 

  80. Elias D, David A, Sourrouille I, et al. Neuroendocrine carcinomas: optimal surgery of peritoneal metastases (and associated intra-abdominal metastases). Surgery. 2014;155(1):5–12.

    Article  PubMed  Google Scholar 

  81. Chicago Consensus WG. The Chicago Consensus on peritoneal surface malignancies: management of neuroendocrine tumors. Ann Surg Oncol. 2020;27(6):1788–92.

    Article  Google Scholar 

  82. Strosberg JR, Halfdanarson TR, Bellizzi AM, et al. The North American Neuroendocrine Tumor Society consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas. 2017;46(6):707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Long RG, Barnes AJ, Adrian TE, et al. Suppression of pancreatic endocrine tumour secretion by long-acting somatostatin analogue. Lancet. 1979;2(8146):764–7.

    Article  CAS  PubMed  Google Scholar 

  84. Reubi JC, Hacki WH, Lamberts SW. Hormone-producing gastrointestinal tumors contain a high density of somatostatin receptors. J Clin Endocrinol Metab. 1987;65(6):1127–34.

    Article  CAS  PubMed  Google Scholar 

  85. Reubi JC, Maurer R, von Werder K, Torhorst J, Klijn JG, Lamberts SW. Somatostatin receptors in human endocrine tumors. Cancer Res. 1987;47(2):551–8.

    CAS  PubMed  Google Scholar 

  86. Carr JC, Sherman SK, Wang D, et al. Overexpression of membrane proteins in primary and metastatic gastrointestinal neuroendocrine tumors. Ann Surg Oncol. 2013;20(Suppl 3):S739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–63.

    Article  CAS  PubMed  Google Scholar 

  88. Rinke A, Wittenberg M, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): results of long-term survival. Neuroendocrinology. 2017;104(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  89. Caplin ME, Pavel M, Cwikla JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33.

    Article  PubMed  CAS  Google Scholar 

  90. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hope TA, Bodei L, Chan JA, et al. NANETS/SNMMI consensus statement on patient selection and appropriate use of (177)Lu-DOTATATE peptide receptor radionuclide therapy. J Nucl Med. 2020;61(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  92. Kulke MH, Horsch D, Caplin ME, et al. Telotristat ethyl, a tryptophan hydroxylase inhibitor for the treatment of carcinoid syndrome. J Clin Oncol. 2017;35(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  93. Pavel M, Gross DJ, Benavent M, et al. Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. Endocr Relat Cancer. 2018;25(3):309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singh S, Carnaghi C, Buzzoni R, et al. Everolimus in neuroendocrine tumors of the gastrointestinal tract and unknown primary. Neuroendocrinology. 2018;106(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  95. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    Article  CAS  PubMed  Google Scholar 

  97. Pavel ME, Baudin E, Oberg KE, et al. Efficacy of everolimus plus octreotide LAR in patients with advanced neuroendocrine tumor and carcinoid syndrome: final overall survival from the randomized, placebo-controlled phase 3 RADIANT-2 study. Ann Oncol. 2017;28(7):1569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. The Lancet. 2016;387(10022):968–77.

    Article  CAS  Google Scholar 

  99. Garcia-Carbonero R, Rinke A, Valle JW, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms. systemic therapy 2: chemotherapy. Neuroendocrinology. 2017;105(3):281–94.

    Article  CAS  PubMed  Google Scholar 

  100. Ramirez RA, Beyer DT, Chauhan A, Boudreaux JP, Wang YZ, Woltering EA. The role of capecitabine/temozolomide in metastatic neuroendocrine tumors. Oncologist. 2016;21(6):671–5.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fine RL, Gulati AP, Tsushima D, et al. Prospective phase II study of capecitabine and temozolomide (CAPTEM) for progressive, moderately, and well-differentiated metastatic neuroendocrine tumors. J Clin Oncol. 2014;32(3):179.

    Article  Google Scholar 

  102. de Mestier L, Walter T, Brixi H, et al. Comparison of temozolomide-capecitabine to 5-fluorouracile-dacarbazine in 247 patients with advanced digestive neuroendocrine tumors using propensity score analyses. Neuroendocrinology. 2019;108(4):343–53.

    Article  PubMed  CAS  Google Scholar 

  103. Mitry E, Baudin E, Ducreux M, et al. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br J Cancer. 1999;81(8):1351–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heetfeld M, Chougnet CN, Olsen IH, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657–64.

    Article  CAS  PubMed  Google Scholar 

  105. Yantiss RK, Odze RD, Farraye FA, Rosenberg AE. Solitary versus multiple carcinoid tumors of the ileum: a clinical and pathologic review of 68 cases. Am J Surg Pathol. 2003;27(6):811–7.

    Article  PubMed  Google Scholar 

  106. Oberg K, Couvelard A, Delle Fave G, et al. ENETS consensus guidelines for standard of care in neuroendocrine tumours: biochemical markers. Neuroendocrinology. 2017;105(3):201–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants No. T32CA078586 (SKS) and P50 CA1724521-01 (JRH).

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Howe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sherman, S.K., Howe, J.R. (2021). Jejunoileal Neuroendocrine Tumors. In: Cloyd, J.M., Pawlik, T.M. (eds) Neuroendocrine Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-62241-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62241-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62240-4

  • Online ISBN: 978-3-030-62241-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics