Skip to main content

Syntheses and Biological Applications of Fluorescent Probes

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Abstract

Fluorescent probes are powerful tools with vast potential for application in chemical biology. The specific characteristics of the main group of fluorophores coupled with the development of new techniques, have boosted their investigation in various research areas. For instance, the necessity of fluorescent tags applicable in different studies of subcellular localization and mechanisms of action of bioactive compounds has increased the development of fluorophores and new synthetic protocols toward the application in medicinal chemistry. This chapter discuss the first syntheses as well as modern synthetic methods, and some biological applications of the main fluorescent probes for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonçalves, M.S.T.: Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 109, 190–212 (2009)

    Article  CAS  Google Scholar 

  2. Sahoo, H.: Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv. 2, 7017–7029 (2012)

    Article  CAS  Google Scholar 

  3. Terai, T., Nagano, T.: Small-molecule fluorophores and fluorescent probes for bioimaging. Pflügers Arch. Eur. J. Physiol. 465, 347–359 (2013)

    Article  CAS  Google Scholar 

  4. Valeur, B., Berberan-santos, N.: A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J. Chem. Educ. 88, 731–738 (2011)

    Article  CAS  Google Scholar 

  5. Muyskens, M.: Phantastic fluorescence. J. Chem. Educ. 83 768A (2006)

    Google Scholar 

  6. Brewster, D., Lond, K.H., Edin, V.: On the colours of natural bodies. Earth Environ. Sci. Trans. R. Soc. Edinburgh 12, 538–545 (1834)

    Google Scholar 

  7. Herschel, J.F.W., Bart, K.H.: On a case of superficial colour presented by a homogeneous liquid internally colourless. Philosofical Trans. R. Soc. London pp. 147–153 (1845)

    Google Scholar 

  8. Stokes, G.G.: On the change of refrangibility of light. Philos. Trans. R. Soc. London (1852)

    Google Scholar 

  9. Lakowics, J.R.: Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers (1999)

    Google Scholar 

  10. Fu, Y., Finney, N.S.: Small-molecule fluorescent probes and their design. RSC Adv. 8, 29051–29061 (2018)

    Article  CAS  Google Scholar 

  11. Frackowiak, D.: The Jablonski diagram. J. Photochem. Photobiol. 2, 399–401 (1988)

    Google Scholar 

  12. Kricka, L.J., Fortina, P.: Analytical ancestry : “Firsts” in fluorescent labeling of nucleosides, nucleotides, and nuclei acid. Clin. Chem. 55, 670–683 (2009)

    Google Scholar 

  13. Martynov, V.I., Pakhomov, A.A., Popova, N.V, Deyev, I.E., Petrenko, A.G.: Synthetic fluorophores for visualizing biomolecules in living systems. Acta Naturae 8, 33–46 (2016)

    Google Scholar 

  14. Ghisaidoobe, A.B.T., Chung, S.J.: Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci. 15, 22518–22538 (2014)

    Article  CAS  Google Scholar 

  15. Morris, M.: Fluorescence-Based biosensors. Academic Press Inc. (2013)

    Google Scholar 

  16. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L., Urano, Y.: New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010)

    Article  CAS  Google Scholar 

  17. Demchenko, A.P.: Introduction to Fluorescence Sensing. Springer Science & Business Media (2008)

    Google Scholar 

  18. Shimoura, O., Johnson, F.H., Saiga, Y.: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous Hydrimedusan, Aequorea. J. Cell. Comp. Physiol. pp. 223–239 (1962)

    Google Scholar 

  19. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasherf, D.C.: Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994)

    Article  CAS  Google Scholar 

  20. Uchiyama, S., Santa, T., Okiyama, N., Fukushima, T., Imai, K.: Fluorogenic and fluorescent labeling reagents with a benzofurazan skeleton. Biomed Chromatogr. 15, 295–318 (2001)

    Article  CAS  Google Scholar 

  21. Boulton, A.J., Ghosh, P.B., Katritzky, A.R.: A new benzofurazan synthesis. Tetrahedron Lett. 25, 2887–2888 (1966)

    Google Scholar 

  22. Boulton, A.J., Ghosh, P.B., Katritzky, A.R.: Rearrangement of 4-Arylazo- and 4-Nitroso-benzofuroxans: new syntheses of the benzotriazole and benzofurazan ring systems. J. Chem. Soc. B. pp. 1004–1011 (1966)

    Google Scholar 

  23. Ghosh, P.B., Whitehouse, M.W.: 7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole: a new fluorigenic reagent for amino acids and other amines. Biochem. J. 108, 155–156 (1968)

    Article  CAS  Google Scholar 

  24. Prokipcak, J.M., Forte, P.A., Lenno, D.D.: Thermal decomposition of alkyl N-(o-nitrophenyl)carbamates: a novel synthesis of benzofurazan. Can. J. Chem. 47, 2482–2484 (1969)

    Article  CAS  Google Scholar 

  25. Prokipcak, J.M., Forte, P.A.: New preparation of benzo-2,1,3-oxadiazoles (benzofuazans). Can. J. Chem. 48, 3059–3063 (1970)

    Article  Google Scholar 

  26. Uchiyama, S., Takehira, K., Kohtani, S., Santa, T., Nakagaki, R., Tobitaband, S., Imaia, K.: Photophysical study of 5-substituted benzofurazan compounds as fluorogenic probes. Phys. Chem. Chem. Phys. 4, 4514–4522 (2002)

    Article  CAS  Google Scholar 

  27. Norris, S.R., Warner, C.C., Lampkin, B.J., Bouc, P., VanVeller, B.: Synthesis and spectral properties of push-pull dyes based on isobenzofuran scaffolds. Org. Lett. 21, 3817–3821 (2019)

    Article  CAS  Google Scholar 

  28. Uchiyama, S., Santa, T., Fukushima, T., Homma, H., Imai, K.: Effects of the substituent groups at the 4- and 7-positions on the fluorescence characteristics of benzofurazan compounds. J. Chem. Soc. Perkin Trans. 2, 2165–2173 (1998)

    Google Scholar 

  29. Uchiyama, S., Santa, T., Imai, K.: Fluorescence characteristics of six 4,7-disubstituted benzofurazan compounds: an experimental and semi-empirical MO study. J. Chem. Soc. Perkin Trans. 2, 2525–2532 (1999)

    Google Scholar 

  30. Uchiyama, S., Takehira, K., Kohtani, S., Imai, K., Nakagaki, R., Tobitab, S., Santa, T.: Fluorescence on–off switching mechanism of benzofurazans. Org. Biomol. Chem. 1, 1067–1072 (2003)

    Google Scholar 

  31. Andrews, J.L., Ghosh, P., Ternai, B., Whitehouse, M.W.: Ammonium 4-chloro-7-sulfobenzofurazan: A new fluorigenic thiol-specific reagent. Arch. Biochem. Biophys. 214, 386–396 (1982)

    Google Scholar 

  32. Toyooka, T., Imai, K.: New fluorogenic reagent having halogenobenzofurazan structure for thiols: 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Anal. Chem. 56, 2461–2464 (1984); Toyooka, T., Suzuki, T., Saito, Y., Uzu, S., Imai, K.: Fluorogenic reagent for thiols: 4-(N,N-dimethylaminosulphonyl)-7-fluoro-2,1,3-benzoxadiazole. Analyst 114, 413–419 (1989)

    Google Scholar 

  33. Zhu, Z., Liu, W., Cheng, L., Li, Z., Xi, Z., Yi, L.: New NBD-based fluorescent probes for biological thiols. Tetrahedron Lett. 56, 3909–3912 (2015)

    Google Scholar 

  34. Wang, J., Niu, L., Huang, J., Yan, Z. Wang, J.: A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells. Spectrochim. Acta Part A 192, 52–58 (2018)

    Google Scholar 

  35. Heyne, B., Beddie, C., Scaiano, J.C.: Synthesis and characterization of a new fluorescent probe for reactive oxygen species. Org. Biomol. Chem. 5, 1454–1458 (2007)

    Article  CAS  Google Scholar 

  36. Yang, M., Fan, J., Du, J., Long, S., Wang, J., Peng, X.: Imaging of formaldehyde in live cells and daphnia magna via Aza-cope reaction utilizing fluorescence probe with large stokes shifts. Front. Chem. 6, 488 (2018)

    Article  CAS  Google Scholar 

  37. Kozikowski, A.P., Kotoula, M., Ma, D., Boujrad, N., Tückmantel, W., Papadopoulos, V.: Synthesis and biology of a 7-nitro-2,1,3-benzoxadiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor. J. Med. Chem. 40, 2435–2439 (1997)

    Article  CAS  Google Scholar 

  38. Taliani, S., Simorini, F., Sergianni, V., La Motta, C., Da Settimo, F., Cosimelli, B., Abignente, E., Greco, G., Novellino, E., Rossi, L., Gremigni, V., Spinetti, F., Chelli, B., Martini, C.: New fluorescent 2-phenylindolglyoxylamide derivatives as probes targeting the peripheral-type benzodiazepine receptor: design, synthesis, and biological evaluation. J. Med. Chem. 50, 404–407 (2007)

    Article  CAS  Google Scholar 

  39. Salman, B.I., Ali, M.F.B., Marzouq, M.A., Hussein, S.A.: Utility of the fluorogenic characters of benzofurazan for analysis of tigecycline using spectrometric technique; application to pharmacokinetic study, urine and pharmaceutical formulations. Luminescence 34, 175–182 (2019)

    Article  CAS  Google Scholar 

  40. Wang, L., Kong, H., Jin, M., Li, X., Stoika, R., Lin, H., Liu, K.: Synthesis of disaccharide modified berberine derivatives and their anti-diabetic investigation in zebrafish using a fluorescence-based technology. Org. Biomol. Chem. 18, 3563–3574 (2020)

    Article  CAS  Google Scholar 

  41. Kresze, G., Wucherpfennig, W.: New methods of preparative organic chemistry V. Organic syntheses with imides of sulfur dioxide. Angew. Chem. Int. Ed. 6, 149–167 (1967)

    Google Scholar 

  42. Neto, B.A.S., Lopes, A.S., Ebeling, G., Gonçalves, R.S., Costa, V.E.U., Quina, F.H., Dupont, J.: Photophysical and electrochemical properties of π-extended molecular 2,1,3-benzothiadiazoles. Tetrahedron 61, 10975–10982 (2005)

    Article  CAS  Google Scholar 

  43. Henry, B.R., Morrison, J.D.: Studies of the electronic absorption and emission spectra of 2,1,3-benzothiadiazole. J. Mol. Spectrosc. 55, 311–318 (1975)

    Google Scholar 

  44. Kurt Pilgram, K., Zupan, M., Skiles, R.: Bromination of 2,1,3-benzothiadiazoles. J. Heterocycl. Chem. 7, 629–633 (1970)

    Article  Google Scholar 

  45. Neto, B.A., Lapis, A.A., Mancilha, F.S., Vasconcelos, I.B., Thum, C., Basso, L.A., Santos, D.S., Dupont, J.: New sensitive fluorophores for selective DNA detection. Org. Lett. 9, 4001–4004 (2007)

    Article  CAS  Google Scholar 

  46. Neto, B.A., Lapis, A.A., Mancilha, F.S., Batista, E.L., Jr., Netz, P.A., Rominger, F., Basso, L.A., Santos, D.S., Dupont, J.: On the selective detection of duplex deoxyribonucleic acids by 2,1,3-benzothiadiazole fluorophores. Mol. Biosyst. 6, 967–975 (2010)

    Article  CAS  Google Scholar 

  47. Garo, F., Häner, R.: 2,1,3‐Benzothiadiazole‐modified DNA. Eur. J. Org. Chem. pp. 2801–2808 (2012)

    Google Scholar 

  48. Jiang, Q., Zhang, Z., Lu, J., Huang, Y., Lu, Z., Tan, Y., Jiang, Q.: A novel nitro-substituted benzothiadiazole as fluorescent probe for tumor cells under hypoxic condition. Bioorg. Med. Chem. 21, 7735–7741 (2013)

    Article  CAS  Google Scholar 

  49. Appelqvist, H., Stranius, K., Börjesson, K., Nilsson, K.P.R., Dyrager, C.: Specific imaging of intracellular lipid droplets using a benzothiadiazole derivative with solvatochromic properties. Bioconjug. Chem. 28, 1363–1370 (2017)

    Article  CAS  Google Scholar 

  50. Carvalho, P.H.P.R., Correa, J.R., Paiva, K.L.R., Machado, D.F.S., Scholten, J.D., Neto, B.A.D.: Plasma membrane imaging with a fluorescent benzothiadiazole derivative. Beilstein J. Org. Chem. 15, 2644–2654 (2019)

    Article  CAS  Google Scholar 

  51. Neto, B.A.D., Carvalho, P.H.P.R., Santos, D.C.B.D., Gatto, C.C., Ramos, L.M., de Vasconcelos, N.M., Corrêa, J.R., Costa, M.B., de Oliveira, H.C.B., Silva, R.G.: Synthesis, properties and highly selective mitochondria staining with novel, stable and superior benzothiadiazole fluorescent probes. RSC Adv. 2, 1524–1532 (2012)

    Google Scholar 

  52. Carvalho, P.H.P.R., Corrêa, J.R., Paiva, K.L.R., Baril, M., Machado, D.F.S., Scholten, J.D., de Souza, P.E.N., Veiga-Souza, F.H., Spencer, J., Neto, B.A.D.: When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Org. Chem. Front. 6, 2371–2384 (2019)

    Google Scholar 

  53. Carvalho, P.H.P.R., Correa, J.R., Guido, B.C., Gatto, C.C., de Oliveira, H.C.B., Soares, T.A., Neto, B.A.D.: Designed benzothiadiazole fluorophores for selective mitochondrial imaging and dynamics. Chem. Eur. J. 20, 15360–15374 (2014)

    Article  CAS  Google Scholar 

  54. Barcelos, R.C., Pastre, J.C., Caixeta, V., Vendramini-Costa, D.B., de Carvalho, J.E., Pilli, R.A.: Synthesis of methoxylated goniothalamin, aza-goniothalamin and γ-pyrones and their in vitro evaluation against human cancer cells. Bioorg. Med. Chem. 20, 3635–3651 (2012)

    Google Scholar 

  55. Raitz, I., de Souza Filho, R.Y., de Andrade, L.P., Correa, J.R., Neto, B.A.D., Pilli, R.A.: Preferential mitochondrial localization of a goniothalamin fluorescent derivative. ACS Omega. 2, 3774–3784 (2017)

    Article  CAS  Google Scholar 

  56. Cruz, E.H.G., Carvalho, P.H.P.R., Correa, J.R., Silva, D.A.C., Diogo, E.B.T., Filho, J.D.D.S., Cavalcanti, B.C., Pessoa, C., de Oliveira, H.C.B., Guido, B.C., Filho, D.A.D.S., Neto, B.A.D., Junior, E.N.D.S.: Design, synthesis and application of fluorescent 2,1,3-benzothiadiazole-triazole-linked biologically active lapachone derivatives. New J. Chem. 38, 2569–2580 (2014)

    Article  CAS  Google Scholar 

  57. Dheer, D., Singh, V., Shankar, R.: Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem. 71, 30–54 (2017)

    Article  CAS  Google Scholar 

  58. Williams, C.H.G.: Researches on Chinoline and its Homologues. Trans. R. Soc. Edinburg 21, 377–401 (1857)

    Article  Google Scholar 

  59. Mishra, A., Behera, R.K., Behera, P.K., Mishra, B.K., Behera, G.B.: Cyanines during the 1990s: a review. Chem. Rev. 100, 1973–2011 (2000); Henary, M., Paranjpe, S., Owens, E.A.: Syazole containing cyanine dyes Heterocyclic Communications, 19, 1–11 (2013)

    Article  CAS  Google Scholar 

  60. Narayanan, N., Patonay, G.: A new method for the synthesis of heptamethine cyanine dyes: synthesis of new near-infrared fluorescent labels. J. Org. Chem. 60, 2391–2395 (1995)

    Article  CAS  Google Scholar 

  61. Reynolds, G.A., Drexhage, K.H.: Stable heptamethine pyrylium dyes that absorb in the infrared. J. Org. Chem. 42, 885–888 (1977)

    Article  CAS  Google Scholar 

  62. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J., Waggoner, A.S.: Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4(2), 105–111 (1993)

    Article  CAS  Google Scholar 

  63. Norman, D.G., Grainger, R.J., Uhrín, D., Lilley, D.M.: Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Biochemistry 39, 6317–6324 (2000)

    Article  CAS  Google Scholar 

  64. Sun, W., Guo, S., Hu, C., Fan, J., Peng, X.: Recent development of chemosensors based on cyanine platforms. Chem. Rev. 116, 7768–7817 (2016)

    Google Scholar 

  65. Mojzych, M., Henary, M.: Synthesis of cyanine dyes. In: Strekowski, L. (ed.) Heterocyclic Polymethine Dyes, pp. 1–9. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  66. Wang, X., Cui, L., Zhou, N., Zhu, W., Wang, R., Qian, X., Xu, Y.: A highly selective and sensitive near-infrared fluorescence probe for arylamine N-acetyltransferase 2 in vitro and in vivo. Chem. Sci. 4, 2936–2940 (2013)

    Article  CAS  Google Scholar 

  67. Yin, J., Kwon, Y., Kim, D., Lee, D., Kim, G., Hu, Y., Ryu, J.-H., Yoon, J.: Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 136, 5351–5358 (2014)

    Article  CAS  Google Scholar 

  68. Mendel, A.: Improved preparation of 5 dimethylamino-1-naphthalenesulfonyl chloride. J. Chem. Eng. Data 15(2), 340–341 (1970)

    Article  CAS  Google Scholar 

  69. Hartley, B.S., Massey, V.: The active centre of chymotrypsin: I. Labelling with a fluorescent dye Biochim. Biophys. Acta 21, 58–70 (1956); Gray, W.R., Hartley, B.S.: A fluorescent end group reagent for peptides and proteins. Biochem. J. 89, 59p (1963)

    Google Scholar 

  70. Gray, W.R.: Dansyl chloride procedure. Methods Enzymol. 11, 139–151 (1967)

    Article  CAS  Google Scholar 

  71. Hughes, J., Smith, T., Kosterlitz, H., Fothergill, L.A., Morgan, B.A., Morris, H.R.: Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258, 577–579 (1975)

    Google Scholar 

  72. Xiao, Y., Guo, Y., Dang, R., Yan, X., Xu, P., Jiang, P.: A dansyl-based fluorescent probe for the highly selective detection of cysteine based on a d-PeT switching mechanism. RSC Adv. 7, 21050–21053 (2017)

    Article  CAS  Google Scholar 

  73. Cao, M., Jiang, L., Hu, F., Zhang, Y., Yang, W.C., Liu, S.H., Yin, J.: A dansyl-based fluorescent probe for selectively detecting Cu2+ and imaging in living cells. RSC Adv. 5, 23666–23670 (2015)

    Article  CAS  Google Scholar 

  74. Gee, K.R., Brown, K.A., Chen, W.-N.U., Bishop-Stewart, J., Gray, D., Johnson, I.: Chemical and physiological characterization of Fluo-4 Ca2+-indicator dyes. Cell Calcium 27, 97–106 (2000)

    Article  CAS  Google Scholar 

  75. Mintaz, A., Kao, J.P.Y., Tsieng, R.Y.: Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178 (1989)

    Article  Google Scholar 

  76. Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A.: In vivo two-photon calcium imaging of neuronal networks. PNAS 100, 7319–7324 (2003)

    Google Scholar 

  77. Kaestner, L., Tabellion, W., Weiss, W., Bernhardt, I., Lippa, P.: Calcium imaging of individual erythrocytes: problems and approaches. Cell Calcium 39, 13–19 (2006)

    Article  CAS  Google Scholar 

  78. von Baeyer, A.: Uber ein neue Klasse von Farbstoffen. Chem. Ber. 4, 555–558 (1871)

    Google Scholar 

  79. Klonis, N., Sawyer, W.H.: Spectral properties of the prototropic forms of fluorescein in aqueous solution. J. Fluoresc. 6, 147–157 (1996)

    Article  CAS  Google Scholar 

  80. Riggs, J.L., Seiwald, R.J., Burckhalter, J.H.: Isothiocyanate compounds as fluorescent labeling agents for immune serum. Am. J. Pathol. 34, 1081–1097 (1958)

    CAS  Google Scholar 

  81. Confalone, P.N.: The use of heterocyclic chemistry in the synthesis of natural and unnatural products. J. Heterocycl. Chem. 27, 31–46 (1990)

    Article  CAS  Google Scholar 

  82. Sun, W.C., Gee, K.R., Klaubert, D.H., Haugland, R.P.: Synthesis of fluorinated fluoresceins. J. Org. Chem. 62, 6469–6475 (1997)

    Article  CAS  Google Scholar 

  83. Chen, X., Ma, H.: A selective fluorescence-on reaction of spiro form fluorescein hydrazide with Cu(II). Anal. Chim. Acta 575, 217–222 (2006)

    Article  CAS  Google Scholar 

  84. Chen, X., Ko, S.-K., Kim, M.J., Shin, I., Yoon, J.: A thiol-specific fluorescent probe and its application for bioimaging. Chem. Commun. 46, 2751–2753 (2010)

    Article  CAS  Google Scholar 

  85. Berthsen, A.: Ueber ein neues Chromogen, das Phenazoxin. Chem. Ber. 20, 942–944 (1887)

    Article  Google Scholar 

  86. Kehrmaiin, F., Neil, A.A.: Synthese in der Gruppe der Azoxine. Ber. Dtsch. Chem. Ges. 47, 3102–3109 (1914)

    Article  Google Scholar 

  87. Katritzky, A.R., Boulton, A.J.: Advances in Heterocyclic Chemistry. Academic Press (1967

    Google Scholar 

  88. Müller, P., Buu-Hoϊ, N.P., Rips, R.: Preparation and some reactions of phenoxazine and phenoselenazine. J. Org. Chem. 24, 37–39 (1959)

    Article  Google Scholar 

  89. Turpin, G.S.: The action of picric chloride on amines in presence of alkali. J. Chem. Soc. 59, 714–725 (1891)

    CAS  Google Scholar 

  90. Möhlau, R., Uhlmann, K.: Zur Kenntniss der Chinazin- und Oxazinfarbstoffe. Justus Liebigs Ann. Chem. 289, 90–130 (1896)

    Article  Google Scholar 

  91. Kanitz, A., Hartmann, H.: Preparation and characterization of bridged naphthoxazinium salts. Eur. J. Org. Chem. 4, 923–930 (1999)

    Article  Google Scholar 

  92. Martinez, V., Henary, M.: Nile red and nile blue: applications and syntheses of structural analogues. Chem. Eur. J. 22, 13764–13782 (2016)

    Article  CAS  Google Scholar 

  93. Jose, J., Burgess, K.: Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62, 11021–11037 (2006)

    Article  CAS  Google Scholar 

  94. Greenspan, P., Mayer, E.P., Fowler, S.D.: Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965–973 (1985)

    Article  CAS  Google Scholar 

  95. Miller, E.W., Albers, A.E., Pralle, A., Isacoff, E.Y., Chang, C.J.: Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005)

    Article  CAS  Google Scholar 

  96. Zhan, C., Cheng, J., Li, B., Huang, S., Zeng, F., Wu, S.: A fluorescent probe for early detection of melanoma and its metastasis by specifically imaging tyrosinase activity in a mouse model. Anal. Chem. 90, 8807–8815 (2018)

    Article  CAS  Google Scholar 

  97. Noelting, E., Dziewonski, K.: Zur Kenntniss der Rhodamine. Ber. Dtsch. Chem. Ges. 38, 3516–3527 (1905); Ehrlich, P., Benda, L.: Über die Einwirkung von Cyankalium auf Pyronin- und Acridinium-Farbstoffe. Ber. Dtsch. Chem. Ges. 46, 1931–1951 (1913)

    Google Scholar 

  98. Dujols, V., Ford, F., Czarnik, A.W.: A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997)

    Article  CAS  Google Scholar 

  99. Chen, X., Wang, X., Wang, S., Shi, W., Wang, K., Ma, H.: A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chem. Eur. J. 14, 4719–4724 (2008)

    Article  CAS  Google Scholar 

  100. Panchuk-Voloshina, N., Haugland, R.P., Bishop-Stewart, J., Bhalgat, M.K., Millard, P.J., Mao, F., Leung, W.Y., Haugland, R.P.: Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188 (1999)

    Article  CAS  Google Scholar 

  101. Mao, F., Leung, W-L., Haugland, R.P.: Sulfonated Xanthene Derivatives. U. S. Patent 6,130,101, Oct. 10, 2000

    Google Scholar 

  102. Berlier, J.E., Rothe, A., Buller, G., Bradford, J., Gray, D.R., Filanoski, B.J., Telford, W.G., Yue, S., Liu, J., Cheung, C.-Y., Chang, W., Hirsch, J.D., Beechem, J.M., Haugland, R.P., Haugland, R.P.: Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J. Histochem. Cytochem. 51, 1699–1712 (2003)

    Article  CAS  Google Scholar 

  103. Bullok, K., Piwnica-Worms, D.: Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J. Med. Chem. 48, 5404–5407 (2005)

    Article  CAS  Google Scholar 

  104. Baskin, J.M., Prescher, J.A., Laughlin, S.T., Agard, N.J., Chang, P.V., Miller, I.A., Lo, A., Codelli, J.A., Bertozzi, C.R.: Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104, 16793–16797 (2007)

    Article  CAS  Google Scholar 

  105. Laughlin, S.T., Baskin, J.M., Amacher, S.L., Bertozzi, C.R.: In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008)

    Article  CAS  Google Scholar 

  106. Dommerholt, J., Schmidt, S., Temming, R., Hendriks, L.J.A., Rutjes, F.P.J.T., van Hest, J.C.M., Lefeber, D.J., Friedl, P., van Delft, F.L.: Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. 49, 9422–9425 (2010)

    Article  CAS  Google Scholar 

  107. Karver, M.R., Weissleder, R., Hilderbrand, S.A.: Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug. Chem. 22, 2263–2270 (2011)

    Article  CAS  Google Scholar 

  108. Sindbert, S., Kalinin, S., Nguyen, H., Kienzler, A., Clima, L., Bannwarth, W., Appel, B., Müller, S., Seidel, C.A.M.: Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 133, 2463–2480 (2011)

    Article  CAS  Google Scholar 

  109. Someya, T., Ando, A., Kimoto, M., Hirao, I.: Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res. 43, 6665–6676 (2015)

    Article  CAS  Google Scholar 

  110. Dalton, C.E., Quinn, S.D., Rafferty, A., Morten, M.J., Gardiner, J.M., Magennis, S.W.: Single-molecule fluorescence detection of a synthetic heparan sulfate disaccharide. ChemPhysChem 17, 3442–3446 (2016)

    Article  CAS  Google Scholar 

  111. Comeo, E., Kindon, N.D., Soave, M., Stoddart, L.A., Kilpatrick, L.E., Scammells, P.J., Hill, S.J., Kellam, B.: Subtype-selective fluorescent ligands as pharmacological research tools for the human adenosine A2A receptor. J. Med. Chem. 63, 2656–2672 (2020)

    Article  CAS  Google Scholar 

  112. Brun, M.A., Griss, R., Reymond, L., Tan, K.-T., Piguet, J., Peters, R.J.R.W., Vogel, H., Johnsson, K.: Semisynthesis of fluorescent metabolite sensors on cell surfaces. J. Am. Chem. Soc. 133, 16235–16242 (2011)

    Article  CAS  Google Scholar 

  113. Sethna, S.M., Shah, N.M.: The chemistry of coumarins. Chem. Rev. 36, 1–62 (1945)

    Article  CAS  Google Scholar 

  114. Trenor, S.R., Shultz, A.R., Love, B.J., Long, T.E.: Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev. 104, 3059–3077 (2004)

    Article  CAS  Google Scholar 

  115. Perkin, W.H.: On the artificial production of coumarin and formation of its homologues. J. Chem. Soc. 21, 53–63 (1868)

    Article  Google Scholar 

  116. Perkin, W.H.: On the hydride of aceto-salicyl. J. Chem. Soc. 21, 181–186 (1868)

    Article  Google Scholar 

  117. Perkin, W.H.: On the formation of coumarin and of cinnamic and of other analogous acids from the aromatic aldehydes. J. Chem. Soc. 31, 388–427 (1877)

    Article  Google Scholar 

  118. von Pechmann, H., Welsh, W.: Ueber einige neue Cumarine. Ber. Dtsch. Chem. Ges. 17, 1646–1652 (1884)

    Google Scholar 

  119. Knoevenagel, E.: Condensationen zwischen Malonester und Aldehyden unter dem Einfluss von Ammoniak und organischen Aminen. Ber. Dtsch. Chem. Ges. 31, 2585–2595 (1898)

    Article  CAS  Google Scholar 

  120. Kitamura, N., Fukagawa, T., Kohtani, S., Kitoh, S., Kunimoto, K.-K., Nakagaki, R.: Synthesis, absorption, and fluorescence properties and crystal structures of 7-aminocoumarin derivatives. J. Photochem. Photobiol. A Chem. 188, 378–386 (2007)

    Article  CAS  Google Scholar 

  121. Chemate, S.B., Sekar, N.: Novel iminocoumarin derivatives: synthesis, spectroscopic and computational studies. J. Fluoresc. 25, 1615–1628 (2015)

    Article  CAS  Google Scholar 

  122. Nourmohammadian, F., Gholami, M.D.: Microwave-promoted one-pot syntheses of coumarin dyes. Synth. Commun. 40, 901–909 (2010)

    Article  CAS  Google Scholar 

  123. Galvani, G., Reddy, K.H.V., Beauvineau, C., Ghermani, N., Mahuteau-Betzer, F., Alami, M., Messaoudi, S.: Conversion of 3-bromo-2H-coumarins to 3-(Benzofuran-2-yl)-2H-coumarins under palladium catalysis: synthesis and photophysical properties study. Org Lett. 19, 910–913 (2017)

    Article  CAS  Google Scholar 

  124. Zou, Q., Fang, Y., Zhao, Y., Zhao, H., Wang, Y., Gu, Y., Wu, F.: Synthesis and in vitro photocytotoxicity of coumarin derivatives for one- and two-photon excited photodynamic therapy. J. Med. Chem. 56, 5288–5294 (2013)

    Article  CAS  Google Scholar 

  125. Vadola, P.A., Sames, D.: Catalytic coupling of arene C-H bonds and alkynes for the synthesis of coumarins: substrate scope and application to the development of neuroimaging agents. J. Org. Chem. 77, 7804–7814 (2012)

    Article  CAS  Google Scholar 

  126. Hong, V., Presolski, S.I., Ma, C., Finn, M.G.: Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009)

    Article  CAS  Google Scholar 

  127. Lemieux, G.A., De Graffenried, C.L., Bertozzi, C.R.: A fluorogenic dye activated by the Staudinger ligation. J. Am. Chem. Soc. 125, 4708–4709 (2003)

    Article  CAS  Google Scholar 

  128. Beatty, K.E., Fisk, J.D., Smart, B.P., Lu, Y.Y., Szychowski, J., Hangauer, M.J., Baskin, J.M., Bertozzi, C.R., Tirrell, D.A.: Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. ChemBioChem 11, 2092–2095 (2010)

    Article  CAS  Google Scholar 

  129. Yao, J.Z., Uttamapinant, C., Poloukhtine, A., Baskin, J.M., Codelli, J.A., Sletten, E.M., Bertozzi, C.R., Popik, V.V., Ting, A.Y.: Fluorophore targeting to cellular proteins via enzyme-mediated azide ligation and strain-promoted cycloaddition. J. Am. Chem. Soc. 134, 3720–3728 (2012)

    Article  CAS  Google Scholar 

  130. Yin, H., Zhang, B., Yu, H., Zhu, L., Feng, Y., Zhu, M., Guo, Q., Meng, X.: Two-photon fluorescent probes for biological Mg(2+) detection based on 7-substituted coumarin. J. Org. Chem. 80, 4306–4312 (2015)

    Article  CAS  Google Scholar 

  131. Komatsu, K., Urano, Y., Kojima, H., Nagano, T.: Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J. Am. Chem. Soc. 129, 13447–13454 (2007)

    Article  CAS  Google Scholar 

  132. Jung, H.S., Kwon, P.S., Lee, J.W., Kim, J.I., Hong, C.S., Kim, J.W., Yan, S., Lee, J.Y., Lee, J.H., Joo, T., Kim, J.S.: Coumarin-derived Cu(2+)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 131, 2008–2012 (2009)

    Article  CAS  Google Scholar 

  133. Zhou, B., Liu, W., Zhang, H., Wu, J., Liu, S., Xu, H., Wang, P.: Imaging of nucleolar RNA in living cells using a highly photostable deep-red fluorescent probe. Biosens. Bioelectron. 68, 189–196 (2015)

    Article  CAS  Google Scholar 

  134. Brauns, E.B., Madaras, M.L., Coleman, R.S., Murphy, C.J., Berg, M.A.: Measurement of local DNA reorganization on the picosecond and nanosecond time scales. J. Am. Chem. Soc. 121, 11644–11649 (1999)

    Article  CAS  Google Scholar 

  135. Jung, H.S., Han, J.H., Pradhan, T., Kim, S., Lee, S.W., Sessler, J.L., Kim, T.W., Kang, C., Kim, J.S.: A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33, 945–953 (2012)

    Article  CAS  Google Scholar 

  136. He, L., Xu, Q., Liu, Y., Wei, H., Tang, Y., Lin, W.: Coumarin-based turn-on fluorescence probe for specific detection of glutathione over cysteine and homocysteine. ACS Appl. Mater. Interfaces 7, 12809–12813 (2015)

    Article  CAS  Google Scholar 

  137. Yue, Y., Huo, F., Ning, P., Zhang, Y., Chao, J., Meng, X., Yin, C.: Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells. J. Am. Chem. Soc. 139, 3181–3185 (2017)

    Article  CAS  Google Scholar 

  138. Wu, L., Tian, X., Groleau, R.R., Wang, J., Han, H.-H., Reeksting, S.B., Sedgwick, A.C., He, X.-P., Bull, S.D., James, T.D.: Coumarin-based fluorescent probe for the rapid detection of peroxynitrite ‘AND’ biological thiols. RSC Adv. 10, 13496–13499 (2020)

    Article  Google Scholar 

  139. Win, K.Y., Feng, S.S.: Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005)

    Article  CAS  Google Scholar 

  140. Lin, Q., Huang, Q., Li, C., Bao, C., Liu, Z., Li, F., Zhu, L.: Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. J. Am. Chem. Soc. 132, 10645–10647 (2010)

    Article  CAS  Google Scholar 

  141. Schmitt, A., Hinkeldey, B., Wild, M., Jung, G.: Synthesis of the Core Compound of the BODIPY Dye Class: 4,4′-Difluoro-4-bora-(3a,4a)-diaza-s-indacene. J. Fluoresc. 19, 755–758 (2009)

    Article  CAS  Google Scholar 

  142. Treibs, A., Kreuzer, F.: Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Justus Liebigs Ann. Chem. 718, 208–223 (1968)

    Article  CAS  Google Scholar 

  143. Squeo, B.M., Gregoriou, V.G., Avgeropoulos, A., Bayse, S., Allard, S., Scherf, U., Chochos, C.L.: BODIPY-based polymeric dyes as emerging horizon materials for biological sensing and organic electronic applications. Prog. Polym. Sci. 71, 26–52 (2017)

    Article  CAS  Google Scholar 

  144. Zhang, M., Hao, E., Xu, Y., Zhang, S., Zhu, H., Wang, Q., Yua, C., Jiao, L.: One-pot efficient synthesis of pyrrolylBODIPY dyes from pyrrole and acyl chloride. RSC Adv. 2, 11215–11218 (2012)

    Article  CAS  Google Scholar 

  145. Rumyantsev, E.V., Marfin, Y.S.: Boron Dipirrins: mechanism of formation, spectral and photophysical properties, and directions of functionalization. Russ. J. Gen. Chem. 89, 2682–2699 (2019)

    Article  CAS  Google Scholar 

  146. Boens, N., Verbelen, B., Dehaen, W.: Postfunctionalization of the BODIPY core: synthesis and spectroscopy. Eur. J. Org Chem. pp. 6577–6595 (2015)

    Google Scholar 

  147. Chong, H., Fron, E., Liu, Z., Boodts, S., Thomas, J., Harvey, J.N., Hofkens, J.H., Dehaen, W.V., der Auweraer, M., Smet, M.: Acid-sensitive BODIPY dyes: synthesis through Pd-catalyzed direct C(sp3)-H arylation and photophysics. Chem. Eur. J. 23, 4687–4699 (2017)

    Article  CAS  Google Scholar 

  148. Guerrero-Corella, A., Asenjo-Pascual, J., Pawar, T.J., Díaz-Tendero, S., Martín-Sómer, A., Gómez, C.V., Belmonte-Vázquez, J.L., Ramírez-Ornelas, D.E., Peña-Cabrera, E., Fraile, A., Cruz, D.C., Alemán, J.: BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions. Chem. Sci. 10, 4346–4351 (2019)

    Article  CAS  Google Scholar 

  149. Lu, H., Mack, J., Yang, Y., Shen, Z.: Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 43, 4778–4823 (2014)

    Article  CAS  Google Scholar 

  150. Liu, M., Ma, S., She, M., Chen, J., Wang, Z., Liu, P., Zhang, S., Li, J.: Structural modification of BODIPY: improve its applicability. Chin. Chem. Lett. 30, 1815–1824 (2019)

    Article  CAS  Google Scholar 

  151. Bodio, E., Goze, C.: Investigation of B-F substitution on BODIPY and aza-BODIPY dyes: development of B-O and B-C BODIPYs. Dyes Pigm. 160, 700–710 (2019)

    Article  CAS  Google Scholar 

  152. Heisig, F., Gollos, S., Freudenthal, S.J., El-Tayeb, A., Iqbal, J., Müller, C.E.: Synthesis of BODIPY derivatives substituted with various bioconjugatable linker groups: a construction kit for fluorescent labeling of receptor ligands. J. Fluoresc. 24, 213–230 (2014)

    Article  CAS  Google Scholar 

  153. Alamudi, S.H., Satapathy, R., Kim, J., Su, D., Ren, H., Das, R., Hu, L., Alvarado-Martínez, E., Lee, J.Y., Hoppmann, C., Peña-Cabrera, E., Ha, H.-H., Park, H.-S., Wang, L., Chang, Y.-T.: Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat. Commun. 7, 11964 (2016)

    Article  CAS  Google Scholar 

  154. Carlson, J.C., Meimetis, L.G., Hilderbrand, S.A., Weissleder, R.: BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. Angew. Chem. Int. Ed. 52, 6917–6920 (2013)

    Article  CAS  Google Scholar 

  155. Reisacher, U., Ploschik, D., Rönicke, F., Cserép, G.B., Kele, P., Wagenknecht, H.-A.: Copper-free dual labeling of DNA by triazines and cyclopropenes as minimal orthogonal and bioorthogonal functions. Chem. Sci.10, 4032–4037 (2019)

    Google Scholar 

  156. Gorbatov, S.A., Kozlov, M.A., Zlobin, I.E., Kartashov, A.E., Zavarzin, I.V., Volkova, Y.A.: Highly selective BODIPY-based fluorescent probe for Zn2+ imaging in plant roots. Mendeleev Commun. 28, 615–617 (2018)

    Article  CAS  Google Scholar 

  157. Huang, Y., Li, C.-F., Shi, W.-J., Tan, H.-Y., He, Z.-Z., Zheng, L., Liu, F., Yan, J.-W.: A near-infrared BODIPY-based fluorescent probe for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in living cells. Talanta. 198, 390–397 (2019).

    Google Scholar 

  158. Bertrand, B., Passador, K., Goze, C., Denat, F., Bodio, E., Salmain, M.: Metal-based BODIPY derivatives as multimodal tools for life sciences. Coord. Chem. Rev. 358, 108–124 (2018)

    Google Scholar 

  159. Marfin, Y.S., Solomonov, A.V., Timin, A.S., Rumyantsev, E.V.: Recent advances of individual BODIPY and BODIPY-based functional materials in medical diagnostics and treatment. Curr. Med. Chem. 24, 2745–2772 (2017)

    Article  CAS  Google Scholar 

  160. Zhang, J., Wang, N., Ji, X., Tao, Y., Wang, J., Zhao, W.: BODIPY-based fluorescent probes for biothiols. Chem. Eur. J. 26, 4172–4192 (2020)

    Article  CAS  Google Scholar 

  161. Gao, J., Tao, Y., Zhang, J., Wang, N., Ji, X., He, J., Si, Y., Zhao, W.: Development of lysosome-targeted fluorescent probes for Cys by regulating the boron-dipyrromethene (BODIPY) molecular structure. Chem. Eur. J. 25, 11246–11256 (2019)

    CAS  Google Scholar 

  162. Wang, W., Lorion, M.M., Martinazzoli, O., Ackermann, L.: BODIPY peptide labeling by late-stage C(sp3)-H activation. Angew. Chem. Int. Ed. 57, 10554–10558 (2018)

    Article  CAS  Google Scholar 

  163. Tian, Z., Ding, L., Li, K., Song, Y., Dou, T., Hou, J., Tian, X., Feng, L., Ge, G., Cui, J.: Rational design of a long-wavelength fluorescent probe for highly selective sensing of carboxylesterase 1 in living systems. Anal. Chem. 91, 5638–5645 (2019)

    Article  CAS  Google Scholar 

  164. Sekhar, A.R., Mallik, B., Kumar, V., Sankar, J.: A cell-permeant small molecule for the super-resolution imaging of the endoplasmic reticulum in live cells. Org. Biomol. Chem. 17, 3732–3736 (2019)

    Article  CAS  Google Scholar 

  165. Franke, J.M., Raliski, B.K., Boggess, S.C., Natesan, D.V., Koretsky, E.T., Zhang, P., Kulkarni, R.U., Deal, P.E., Milleret, E.W.: BODIPY fluorophores for membrane potential imaging. J. Am. Chem. Soc. 141, 12824–12831 (2019)

    Article  CAS  Google Scholar 

  166. Bodio, E., Denat, F., Goze, C.: BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. J. Porphyrins. Phthalocyanines 23, 1159–1183 (2019)

    Article  CAS  Google Scholar 

  167. Wang, L., Qian, Y.: A novel quinoline-BODIPY fluorescent probe for fast sensing biothiols via hydrogen bonds assisted-deprotonation mechanism and its application in cells and zebrafish imaging. J. Photochem. Photobiol. A. Chem. 372, 122–130 (2019)

    Article  CAS  Google Scholar 

  168. Kolemen, S., Akkaya, E.U.: Reaction-based BODIPY probes for selective bio-imaging. Coord. Chem. Rev. 354, 121–134 (2018)

    Article  CAS  Google Scholar 

  169. Yin, J., Ma, Y., Li, G., Peng, M., Lin, W.: A versatile small-molecule fluorescence scaffold: carbazole derivatives for bioimaging. Coord. Chem. Rev. 412, 213257 (2020)

    Article  CAS  Google Scholar 

  170. Graebe, C.: Ueber Synthesen des Carbazols. Ber. Dtsch. Chem. Ges. 5, 376–378 (1872)

    Article  Google Scholar 

  171. Graebe, C., Ullmann, F.: Ueber eine neue Carbazolsynthese. Justus Liebigs Ann. Chem. 291, 16–17 (1896)

    Article  CAS  Google Scholar 

  172. Borsche, W.: Ueber Tetra- und Hexahydrocarbazolverbindungen und eine neue Carbazolsynthese. Justus Liebigs Ann. Chem. 359, 49–80 (1908)

    Article  CAS  Google Scholar 

  173. Kitamura, Y., Yoshikawa, S., Furuta, T., Kan, T.: One-pot synthesis of carbazole via tandem suzuki–miyaura and amination reaction. Synlett 3, 377–380 (2008)

    Google Scholar 

  174. Yan, Q., Gin, E., Wasinska-Kalwa, M., Banwell, M.G., Carr, P.D.: A palladium-catalyzed ullmann cross-coupling/reductive cyclization route to the carbazole natural products 3-methyl-9H-carbazole, glycoborine, glycozoline, clauszoline K, mukonine, and karapinchamine A. J. Org. Chem. 82, 4148–4159 (2017)

    Article  CAS  Google Scholar 

  175. Bal, A., Maiti, S., Mal, P.: Iodine(III)-enabled distal C-H functionalization of biarylsulfonanilides. J. Org. Chem. 83, 11278–11287 (2018)

    Article  CAS  Google Scholar 

  176. Weber, G., Teale, F.W.J.: Fluorescence excitation spectrum of organic compounds in solution. Part 1. - Systems with quantum yield independent of the exciting wavelength. Trans. Faraday Soc. 54, 640–648 (1958)

    Google Scholar 

  177. van Duuren, B.L.: The fluorescence spectra of aromatic hydrocarbons and heterocyclic aromatic compounds. Anal. Chem. 32, 1436–1442 (1960)

    Google Scholar 

  178. Adhikari, R.M., Neckers, D.C., Shah, B.K.: Photophysical study of blue, green, and orange-red light-emitting carbazoles. J. Org. Chem. 74, 3341–3349 (2009)

    Article  CAS  Google Scholar 

  179. Xu, J., Zhang, Y., Yu, H., Gao, X., Shao, S.: Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal. Chem. 88, 1455–1461 (2016)

    Article  CAS  Google Scholar 

  180. Zheng, Z., Zhang, T., Liu, H., Chen, Y., Kwok, R.T.K., Ma, C., Zhang, P., Sung, H.H.Y., Williams, I.D., Lam, J.W.Y., Wong, K.S., Tang, B.Z.: Bright near-infrared aggregation-induced emission luminogens with strong two-photon absorption, excellent organelle specificity, and efficient photodynamic therapy potential. ACS Nano 12, 8145–8159 (2018)

    Article  CAS  Google Scholar 

  181. Li, D., Sun, X., Huang, J., Wang, Q., Feng, Y., Chen, M., Meng, X., Zhu, M., Wang, X.: A carbazole-based “turn-on” two-photon fluorescent probe for biological Cu2+ detection vis Cu2+-promoted hydrolysis. Dyes Pigm. 125, 185–191 (2016)

    Article  CAS  Google Scholar 

  182. Divya, K. P., Sreejith, S., Ashokkumar, P., Yuzhan, K., Peng, Q., Maji, S.K., Tong, Y., Yu, H., Zhao, Y., Ramamurthy, P., Ajayaghosh, A.: A ratiometric fluorescent molecular probe with enhanced two-photon response upon Zn2+ binding for in vitro and in vivo bioimaging. Chem. Sci. 5, 3469–3474 (2014)

    Google Scholar 

  183. Haohan Song, H., Zhang, J., Wang, X., Zhou, Y., Xu, C., Pang, X., Peng, X.: A novel “turn-on” fluorescent probe with a large stokes shift for homocysteine and cysteine: performance in living cells and zebrafish. Sens. Actuators, B. 259, 233–240 (2018)

    Google Scholar 

  184. Liu, X., Sun, Y., Zhang, Y., Miao, F., Wang, G., Zhao, H., Yu, X., Liu, H., Wong, W.-Y.: A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm. Org. Biomol. Chem. 9, 3615–3618 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Henrique Tomich de Paula da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, S.Q., Raitz, I., Barcelos, M.P., Taft, C.A., de Paula da Silva, C.H.T. (2021). Syntheses and Biological Applications of Fluorescent Probes. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_18

Download citation

Publish with us

Policies and ethics