Skip to main content

Biology of Perioperative Nutrition: An Update

  • Chapter
  • First Online:
Emergency General Surgery in Geriatrics

Part of the book series: Hot Topics in Acute Care Surgery and Trauma ((HTACST))

  • 772 Accesses

Abstract

Nearly up to 70% of hospitalized patients are moderately to severely malnourished, although the vocabulary and the practice of nutritional support of critically ill patients have changed significantly in recent years. The question that once lingered throughout the literature regarding when critically ill patients should be fed has been answered: feed critically ill patients as early as possible. The question that remains, and that still is being worked on, is what to feed them. The benefit of early institution of enteral or parenteral nutrition in the overall management of critically ill patients has been well-established. This is particularly important in elderly surgical patients who undergo either elective or emergency surgery. Following injury, or any other surgical catastrophe, energy requirements are greatly increased to sustain the increased metabolism and wound repair. Protein requirements have greatly expanded to sustain increased metabolism and wound repair, and there is an increased need for achieving and maintaining positive balance. In this chapter, we will give an update on the biology of perioperative nutrition support and GI tract access for enteral nutrition. Moreover, the current review focuses on the importance of early nutritional support in surgical patients and their impact on outcomes in the postoperative recovery phase, and finally on major nutritional organizations guidelines both on diagnosing malnutrition and providing nutritional therapy in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hudson L, Chittams J, Griffith C, et al. Malnutrition identified by academy of nutrition and Dietetics/American society for parenteral and enteral nutrition is associated with more 30-day readmissions, greater hospital mortality, and longer hospital stays: a retrospective analysis of nutrition assessment data in a major medical center. JPEN J Parenter Enteral Nutr. 2018;42(5):892–7.

    PubMed  Google Scholar 

  2. Latifi R. Nutritional therapy in critically ill and injured patients. Surg Clin North Am. 2011;91(3):579–93.

    PubMed  Google Scholar 

  3. Krall JA, Reinhardt F, Mercury OA, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci Transl Med. 2018;10:436. https://doi.org/10.1126/scitranslmed.aan3464.

    Article  CAS  Google Scholar 

  4. Gillis C, Wischmeyer PE. Pre-operative nutrition and the elective surgical patient: why, how and what? Anaesthesia. 2019;74(Suppl 1):27–35.

    PubMed  Google Scholar 

  5. Latifi R, Dudrick SJ. The biology and practice of current nutritional support. 2nd ed. Georgetown, TX: Landes Bioscience; 2003.

    Google Scholar 

  6. Latifi R, Uraneus S. Biology of nutrition support in the critically ill patients. In: Latifi R, Dudrick SJ, editors. The biology and practice of current nutritional support. 2nd ed. Georgetown, TX: Landes Bioscience; 2003. p. 369–83.

    Google Scholar 

  7. Latifi R, Caushaj PE. Nutrition support in critically ill patients: current status and practice. J Clin Ligand Assay. 1999;22(3):279–84.

    Google Scholar 

  8. Cuthbertson DP. Observations on disturbance of metabolism produced by injury to the limbs. QJ Med. 1932;25:233–46.

    Google Scholar 

  9. Wilmore DW, Orcutt TW, Mason AD Jr, et al. Alterations in hypothalamic function following thermal injury. J Trauma. 1975;15:697–703.

    CAS  PubMed  Google Scholar 

  10. Birkhahn RH, Long CL, Fitkin D, et al. Effects of major skeletal trauma on whole body protein turnover in man measure by L—[1, 14C]—leucine. Surgery. 1980;88(2):294–308.

    CAS  PubMed  Google Scholar 

  11. Kien CL, Young VR, Rohrbaugh DK, et al. Increased rate of whole body protein synthesis and breakdown in children recovering from burns. Ann Surg. 1978;187(4):383–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Levenson SM, Pulaski EJ, del Guercio LRM. Metabolic changes associated with injury. In: Zimmerman LM, Levine R, editors. Physiological principles of surgery. Philadelphia, PA: WB Saunders; 1964. p. 5–7.

    Google Scholar 

  13. Young VR, Munro HN. N-Methylhistidine (3–methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978;37(9):2291–300.

    CAS  PubMed  Google Scholar 

  14. Bilmazes C, Kien CL, Rohrbaugh DK, et al. Quantitative contribution by skeletal muscle to elevated rates of whole-body protein breakdown in burned children as measured by tau-merthylhistidine output. Metabolism. 1978;27(6):671–6.

    CAS  PubMed  Google Scholar 

  15. Williamson DH, Farrell R, Kerr A, et al. Muscle-protein catabolism after injury in man, as measured by urinary excretion of 3-methylhistidine. Clin Sci Mol Med. 1977;52(5):527–33.

    CAS  PubMed  Google Scholar 

  16. Long CL, Schiller WR, Blakemore WS, et al. Muscle protein catabolism in the septic patient as measured by 3-methylhistidine excretion. Am J Clin Nutr. 1977;30:1349–52.

    CAS  PubMed  Google Scholar 

  17. Klaude M, Mori M, Tjader I, et al. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin Sci (Lond). 2012;122(3):133–42.

    CAS  Google Scholar 

  18. Batt J, Herridge M, Dos Santos C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness. Intensive Care Med. 2017;43(12):1844–6.

    PubMed  Google Scholar 

  19. Rooyackers O, Kouchek-Zadeh R, Tjader I, et al. Whole body protein turnover in critically ill patients with multiple organ failure. Clin Nutr. 2015;34(1):95–100.

    CAS  PubMed  Google Scholar 

  20. Essen P, McNurlan MA, Gamrin L, et al. Tissue protein synthesis rates in critically ill patients. Crit Care Med. 1998;26(1):92–100.

    CAS  PubMed  Google Scholar 

  21. van Gassel RJJ, Baggerman MR, van de Poll MCG. Metabolic aspects of muscle wasting during critical illness. Curr Opin Clin Nutr Metab Care. 2020;23(2):96–101.

    PubMed  PubMed Central  Google Scholar 

  22. Latifi R, Khawaja A. Biochemistry of amino acids: clinical implications. In: Latifi R, Dudrick SJ, editors. The biology and practice of current nutritional support. 2nd ed. Georgetown, TX: Landes Bioscience; 2003. p. 369–83.

    Google Scholar 

  23. Latifi R, Dudrick SJ. Surgical nutrition: strategies in critically ill. Austin: Landes; 1995.

    Google Scholar 

  24. Liebau F, Sundstrom M, van Loon LJ, et al. Short-term amino acid infusion improves protein balance in critically ill patients. Crit Care. 2015;19(1):106.

    PubMed  PubMed Central  Google Scholar 

  25. Garber AJ, Karl IE, Kipnis DM. Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release. J Biol Chem. 1976;251(3):826–35.

    CAS  PubMed  Google Scholar 

  26. Souba WW, Wilmore DW. Postoperative alteration of arteriovenous exchange of amino acids across the gastrointestinal tract. Surgery. 1983;94(2):342–50.

    CAS  PubMed  Google Scholar 

  27. Souba WW, Klimberg VS, Plumley DA, et al. The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J Surg Res. 1990;48:383–91.

    CAS  PubMed  Google Scholar 

  28. Fox AD, Kripke SA, Berman JM, et al. Dexamethasone administration induces increased glutaminase specific activity in the jejunum and colon. J Surg Res. 1988;44:391.

    CAS  PubMed  Google Scholar 

  29. Souba WW, Smith RJ, Wilmore DW. Effect of glucocorticoids oh glutamine metabolism in visceral organs. Metabolism. 1985;34:450–6.

    CAS  PubMed  Google Scholar 

  30. Plumley DA, Souba WW, Hautamaki D, et al. Accelerated lung amino acid release in hyperdynamic septic surgical patients. Arch Surg. 1990;125:57.

    CAS  PubMed  Google Scholar 

  31. Austgen TR, Chen MK, Moore W, et al. Endotoxin on the splanchnic metabolism of glutamine and related substrates. J Trauma. 1991;6:742–51.

    Google Scholar 

  32. Austgen TR, Chen MK, Moore W, et al. Endotoxin and renal glutamine metabolism. Arch Surg. 1991;126:23.

    CAS  PubMed  Google Scholar 

  33. Souba WW, Smith RJ, Wilmore DW. Glutamine metabolism by the intestinal tract. JPEN. 1985;9:608–17.

    CAS  Google Scholar 

  34. Hwang TL, O’Dwyer ST, Smith RJ, et al. Preservation of small bowel mucosa using glutamine-enriched parenteral nutrition. Surg Forum. 1986;38:56.

    Google Scholar 

  35. Fox AD, Kripke SA, DePaula J, et al. Effect of a glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. JPEN. 1988;12:325–31.

    CAS  Google Scholar 

  36. Klimberg VS, Souba WW, Dolson DJ, et al. Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer. 1990;66:62–8.

    CAS  PubMed  Google Scholar 

  37. Li SJ, Nussbaum MS, McFadden DW, et al. Addition of L-glutamine to total parenteral nutrition and its effects on portal insulin and glucagon and the development of hepatic steatosis in rats. J Surg Res. 1990;48:421–6.

    CAS  PubMed  Google Scholar 

  38. Helton WS, Jacobs DO, Bonner-Weir S, et al. Effects of glutamine-enriched parenteral nutrition on the exocrine pancreas. JPEN. 1990;14:344–52.

    CAS  Google Scholar 

  39. Burke DJ, Alverdy JC, Aoys E, et al. Glutamine-supplemented total parenteral nutrition improves gut immune function. Arch Surg. 1989;124:1396–139.

    CAS  PubMed  Google Scholar 

  40. Stein TP, Yoshida S, Yamasaki K, et al. Amino acid requirements of critically ill patients. In: Latifi R, editor. Amino acids in critical care and cancer. Austin, TX: RB Landes Company; 1994. p. 9–25.

    Google Scholar 

  41. Stroster JA, Uranues S, Latifi R. Nutritional controversies in critical care: revisiting enteral glutamine during critical illness and injury. Curr Opin Crit Care. 2015;21(6):527–30.

    PubMed  Google Scholar 

  42. Kreymann KG, Berger MM, Deutz NE, et al. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25(2):210–23.

    CAS  PubMed  Google Scholar 

  43. McClave SA, Martindale RG, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33(3):277–316.

    PubMed  Google Scholar 

  44. Composition of EN: Glutamine: Critical Evaluation Research Unit (CERU). 2015 Canadian Practice Guidelines-Critical Care Nutrition. http://www.criticalcarenutrition.com/. Published May 2015.

  45. Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97.

    CAS  PubMed  Google Scholar 

  46. van Zanten AR, Sztark F, Kaisers UX, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014;312(5):514–24.

    PubMed  Google Scholar 

  47. van Zanten AR, Dhaliwal R, Garrel D, et al. Enteral glutamine supplementation in critically ill patients: a systematic review and meta-analysis. Crit Care. 2015;19(1):294.

    PubMed  PubMed Central  Google Scholar 

  48. Barbul A. Arginine and immune function. Nutrition. 1990;6(1):59–62.

    Google Scholar 

  49. Barbul A, Sisto DA, Wassergrug HL, et al. Arginine stimulates lymphocyte immune response in healthy humans. Surgery. 1981;90:244–51.

    CAS  PubMed  Google Scholar 

  50. Stinnett J, Alexander JW, Watanabe C, et al. Plasma and skeletal muscle amino acids following severe burn injury in patients and experimental animals. Ann Surg. 1982;195(1):75–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao-jun C, Chih-chum YU, Wei-shia H, et al. Changes of serum amino acids in severely burned patients. Burns. 1983;10:109–15.

    Google Scholar 

  52. Gennari R, Alexander JW. Arginine, glutamine, and dehydroepiandrosterone reverse the immunosuppressive effect of prednisone during gut-derived sepsis. Crit Care Med. 1997;25(7):1207–14.

    CAS  PubMed  Google Scholar 

  53. Rosenthal MD, Carrott PW, Patel J, et al. Parenteral or enteral arginine supplementation safety and efficacy. J Nutr. 2016;146(12):2594S–600S.

    CAS  PubMed  Google Scholar 

  54. Luiking YC, Poeze M, Ramsay G, et al. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–52.

    CAS  PubMed  Google Scholar 

  55. Kao CC, Bandi V, Guntupalli KK, et al. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond). 2009;117(1):23–30.

    CAS  Google Scholar 

  56. Luiking YC, Poeze M, Ramsay G, et al. The role of arginine in infection and sepsis. JPEN J Parenter Enteral Nutr. 2005;29(1 Suppl):S70–4.

    CAS  PubMed  Google Scholar 

  57. Luiking YC, Poeze M, Deutz NE. Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond). 2015;128(1):57–67.

    CAS  Google Scholar 

  58. Kalil AC, Sevransky JE, Myers DE, et al. Preclinical trial of L-arginine monotherapy alone or with N-acetylcysteine in septic shock. Crit Care Med. 2006;34(11):2719–28.

    CAS  PubMed  Google Scholar 

  59. Mattick JSA, Kamisoglu K, Ierapetritou MG, et al. Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness. Wiley Interdiscip Rev Syst Biol Med. 2013;5(4):449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gluud LL, Dam G, Les I, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2015;2:CD001939.

    Google Scholar 

  61. Blackburn GL, Moldawer LL, Usuii SS, et al. Branched-chain amino acid administration and metabolism during starvation, injury and infection. Surgery. 1979;86:307–14.

    CAS  PubMed  Google Scholar 

  62. Yoshida S, Lanza-Jacoby S, Stein TP. Leucine and glutamine metabolism in septic rats. Biochem J. 1991;276:405–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Freund HR, James JH, Fischer JE. Nitrogen-sparing mechanisms of singly administered branched-chain amino acids in the injured rat. Surgery. 1981;90:237–43.

    CAS  PubMed  Google Scholar 

  64. Cerra FB, Upson D, Angelico R, et al. Branched-chain amino acids support post-operative protein synthesis. Surgery. 1982;92:192–9.

    CAS  PubMed  Google Scholar 

  65. Mendez C, Jurkovich GJ, Wener MH, et al. Effects of supplemental dietary arginine, canola oil and trace elements on cellular immune function in critically injured patients. Shock. 1996;6:7–12.

    CAS  PubMed  Google Scholar 

  66. Garcia-de-Lorenzo A, Ortiz-Leyba C, Planas M, et al. Parenteral administration of different amounts of branch-chain amino acids in septic patients: clinical and metabolic aspects. Crit Care Med. 1997;25(3):418–24.

    CAS  PubMed  Google Scholar 

  67. Grimble G. Why are dietary nucleotides essential nutrients? Br J Nutr. 1996;76:475.

    CAS  PubMed  Google Scholar 

  68. Ilijima S, Tsujinaka T, Kishibuchi M, et al. Total parenteral nutrition solution supplemented with nucleoside and nucleotide mixture sustains intestinal integrity, but does not stimulate intestinal function after massive bowel resection in rats. Am J Nutr. 1995;126:589–95.

    Google Scholar 

  69. Jyoniuchi H, Sun S, Sato S. Nucleotide-free diet suppresses antigen-driven cytokine production by primed T cell: effects of supplemental nucleotides and dietary fatty acids. Nutrition. 1996;12:608–15.

    Google Scholar 

  70. Kishibuchi M, Tsujinaka T, Yano M, et al. Effects of nucleosides and nucleotide mixture of gut mucosal barrier function on parenteral nutrition in rats. J Parenter Enter Nutr. 1997;21:104–11.

    CAS  Google Scholar 

  71. Kulkarni AD, Rudolph FB, Van Buren CT. The role of dietary sources of nucleotides in immune function: a review. Am J Nutr. 1994;124(8 Suppl):1442S–6S.

    CAS  Google Scholar 

  72. LeLeiko NS, Walsh MJ. The role of glutamine, short-chain fatty acids, and nucleotides in intestinal adaption to gastrointestinal disease. Pediatr Gastroenterol. 1996;43:451–69.

    CAS  Google Scholar 

  73. LeLeiko NS, Walsh MJ, Abraham S. Gene expression in the intestine: the effects of dietary nucleotides. Adv Pediatr Infect Dis. 1995;42:145–66.

    CAS  Google Scholar 

  74. Nartinez-Augustin O, Boza JJ, Navarro J, et al. Dietary nucleotides may influence the humoral immunity in immunocompromised children. Nutrition. 1997;13(5):464–9.

    Google Scholar 

  75. Matsumoto Y, Adjei AA, Yamauchi K, et al. A mixture of nucleosides and nucleotides increase bone marrow cell and peripheral neutrophil number in mice infected with methicillin-resistant Staphylococcus aureus. Am J Nutr. 1995;13:465–9.

    Google Scholar 

  76. Matsumoto Y, Adjei AA, Yamauchi K, et al. Nucleoside-nucleotide mixture increases peripheral neutrophils in cyclophosphamide-induced neutropenic mice. Nutrition. 1995;11:296–9.

    CAS  PubMed  Google Scholar 

  77. Sukumar P, Loo A, Magur E, et al. Dietary supplementation of nucleotides and arginine promotes healing of small bowel ulcers in experimental ulcerative ileitis. Dig Dis Sci. 1997;42:1530–6.

    CAS  PubMed  Google Scholar 

  78. Tsujinaka T, Ilijima S, Kido Y, et al. Role of nucleosides and nucleotides and nucleotide mixture in intestinal mucosal growth under total parenteral nutrition. Nutrition. 1994;10:203–4.

    Google Scholar 

  79. Uauy R, Quan R, Gil A. Role of nucleotides in intestinal development and repair: implications for infant nutrition. Am Inst Nutr. 1994;124:1436S–41S.

    CAS  Google Scholar 

  80. Van Buren CT, Rudolph F. Dietary nucleotides: a conditional requirement. Nutrition. 1997;13:47–472.

    Google Scholar 

  81. Walker WA. Exogenous nucleotides and gastrointestinal immunity. Transplant Proc. 1996;28:2438–11.

    CAS  PubMed  Google Scholar 

  82. Yamamoto S, Wang MF, Adjei AA, et al. Role of nucleosides and nucleotides in the immune system, gut reparation after injury and brain function. Nutrition. 1997;13:372–4.

    CAS  PubMed  Google Scholar 

  83. Ogoshi S, Iwasa M, Ynoezawa T, et al. Effect of nucleotide and nucleoside mixture on rats given total parenteral nutrition after 70% hepatectomy. JPEN. 1985;9:339–404.

    CAS  Google Scholar 

  84. Usami M, Furuchi K, Ogino M, et al. The Effect of nucleotide-nucleoside solution on hepatic regeneration after partial hepatectomy in rats. Nutrition. 1996;12:797–803.

    CAS  PubMed  Google Scholar 

  85. Latifi R, Burns G. Nucleic acids and nucleotides in nutritional support. In: Van Way C, editor. Nutrition secrets. Philadelphia: Hanley & Belfus, Inc; 1999. p. 173–7.

    Google Scholar 

  86. Alexander JW. Immunonutrition: the role of omega 3-fatty acids. Nutrition. 1998;14:627–33.

    CAS  PubMed  Google Scholar 

  87. Gadek JE, DeMichele SJ, Karlstad MD, et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Crit Care Med. 1999;27:1409–20.

    CAS  PubMed  Google Scholar 

  88. Chen H, Wang S, Zhao Y, et al. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials. Nutr J. 2018;17(1):57.

    PubMed  PubMed Central  Google Scholar 

  89. Santacruz CA, Orbegozo D, Vincent JL, et al. Modulation of dietary lipid composition during acute respiratory distress syndrome: systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. 2015;39(7):837–46.

    PubMed  Google Scholar 

  90. Desai SA, Jacobs DO. Role of growth hormone in the septic, trauma and surgical patient. In: Torosian MH, editor. Growth hormone in critical illness. Austin: R.G. Landes; 1996. p. 199–40.

    Google Scholar 

  91. Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ failure (MOF): are we winning the battle? Shock. 1998;10:79–89.

    CAS  PubMed  Google Scholar 

  92. Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341:785–92.

    CAS  PubMed  Google Scholar 

  93. Ziegler TR, Young LS, Ferrari-Baliviera E, et al. Use of human growth hormone combine with nutritional support in a critical care unit. JPEN J Parenter Enteral Nutr. 1990;14:574–81.

    CAS  PubMed  Google Scholar 

  94. Knox J, Demling R, Wilmore D, et al. Increased survival after major thermal injury: the effect of growth hormone therapy in adults. J Trauma. 1995;39:526–30.

    CAS  PubMed  Google Scholar 

  95. Herndon DN, Barrow RE, Kunkel KR, et al. Effect of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg. 1990;212:424–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gore DC, Honeycutt D, Jahoor F, et al. Effect of exogenous growth hormone on glucose utilization in burn patients. J Surg Res. 1991;41:518–23.

    Google Scholar 

  97. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.

    CAS  PubMed  Google Scholar 

  98. Fleming RY, Rutan RL, Jahoor F, et al. Effect of recombinant human growth hormone on catabolic hormones and free fatty acids following thermal injury. J Trauma. 1992;32:698–702.

    CAS  PubMed  Google Scholar 

  99. Kowal-Vern A, Sharp-Pucci MM, Walenga JM, et al. Trauma and thermal injury; comparison of homeostatic and cytokines changes in the acute phase of injury. J Trauma. 1998;44:325–9.

    CAS  PubMed  Google Scholar 

  100. Ruokonen E, Takala J. Dangers of growth hormone therapy in critically ill patients. Ann Med. 2000;32:317–22.

    CAS  PubMed  Google Scholar 

  101. Leaf DE, Siew ED, Eisenga MF, et al. Fibroblast growth factor 23 associates with death in critically ill patients. Clin J Am Soc Nephrol. 2018;13(4):531–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rowan MP, Beckman DJ, Rizzo JA, et al. Elevations in growth hormone and glucagon-like peptide-2 levels on admission are associated with increased mortality in trauma patients. Scand J Trauma Resusc Emerg Med. 2016;24(1):119.

    PubMed  PubMed Central  Google Scholar 

  103. Gabor S, Renner H, Matzi V, et al. Early enteral feeding compared with parenteral nutrition after oesophageal or oesophagogastric resection and reconstruction. Br J Nutr. 2005;93(4):509–13.

    CAS  PubMed  Google Scholar 

  104. Hur H, Kim SG, Shim JH, et al. Effect of early oral feeding after gastric cancer surgery: a result of randomized clinical trial. Surgery. 2011;149(4):561–8.

    PubMed  Google Scholar 

  105. Mahmoodzadeh H, Shoar S, Sirati F, et al. Early initiation of oral feeding following upper gastrointestinal tumor surgery: a randomized controlled trial. Surg Today. 2015;45(2):203–8.

    PubMed  Google Scholar 

  106. Hur H, Si Y, Kang WK, et al. Effects of early oral feeding on surgical outcomes and recovery after curative surgery for gastric cancer: pilot study results. World J Surg. 2009;33(7):1454–8.

    PubMed  Google Scholar 

  107. Han H, Pan M, Tao Y, et al. Early enteral nutrition is associated with faster post-esophagectomy recovery in Chinese esophageal cancer patients: a retrospective cohort study. Nutr Cancer. 2018;70(2):221–8.

    PubMed  Google Scholar 

  108. Shimizu N, Oki E, Tanizawa Y, et al. Effect of early oral feeding on length of hospital stay following gastrectomy for gastric cancer: a Japanese multicenter, randomized controlled trial. Surg Today. 2018;48(9):865–74.

    PubMed  Google Scholar 

  109. Parrott J, Frank L, Rabena R, et al. American society for metabolic and bariatric surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: micronutrients. Surg Obes Relat Dis. 2017;13(5):727–41.

    PubMed  Google Scholar 

  110. Bevilacqua LA, Obeid NR, Spaniolas K, et al. Early postoperative diet after bariatric surgery: impact on length of stay and 30-day events. Surg Endosc. 2019;33(8):2475–8.

    PubMed  Google Scholar 

  111. Tariq N, Moore LW, Kudsi J, et al. Fast track feeding after revisional bariatric surgery is associated with reduced length of stay. Surg Obes Relat Dis. 2017;13(10):S166.

    Google Scholar 

  112. Bragg D, El-Sharkawy AM, Psaltis E, et al. Postoperative ileus: recent developments in pathophysiology and management. Clin Nutr. 2015;34(3):367–76.

    PubMed  Google Scholar 

  113. Steenhagen E. Enhanced recovery after surgery: it’s time to change practice! Nutr Clin Pract. 2016;31(1):18–29.

    CAS  PubMed  Google Scholar 

  114. Sagar S, Harland P, Shields R. Early postoperative feeding with elemental diet. Br Med J. 1979;1(6159):293–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mahla V, Khan S, Ahmad R, et al. Early feeding after loop ileostomy reversal: a prospective study. Formos J Surg. 2016;49(5):178–82. https://doi.org/10.1016/j.fjs.2016.05.001.

    Article  Google Scholar 

  116. Herbert G, Perry R, Andersen HK, et al. Early enteral nutrition within 24 hours of lower gastrointestinal surgery versus later commencement for length of hospital stay and postoperative complications. Cochrane Database Syst Rev. 2018;10(10):CD004080.

    PubMed  Google Scholar 

  117. Bower RH, Cerra RRF, Bershadsky B, et al. Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients; result of multicenter, prospective, randomized, clinical trial. Crit Care Med. 1995;23:436–49.

    CAS  PubMed  Google Scholar 

  118. Kudsk K, Minard G, Groce M, et al. A randomized trial of isonitrogenous enteral diets after severe trauma. An immune-enhancing diet reduces septic complications. Ann Surg. 1996;224:531–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Senkal M, Mumme A, Eickhoff U, et al. Early postoperative enteral immunonutrition; Clinical outcome and cost-comparison analysis. Crit Care Med. 1997;25:1489–96.

    CAS  PubMed  Google Scholar 

  120. Atkinson S, Sieffert E, Bihari D, et al. A prospective, randomized, double-blind, controlled clinical trial of enteral immunonutrition in the critically ill. Crit Care Med. 1998;26:1164–72.

    CAS  PubMed  Google Scholar 

  121. Vischmeeyer PE, Lynce J, Liedel J, et al. Glutamine administration reduces Gram-negative bacteremia in severely burned patients; a prospective, randomized, double-blind trial versus isonitrogenous control. Crit Care Med. 2001;29:2075–80.

    Google Scholar 

  122. Houdijk AP, Rijnsburger ER, Jansen J, et al. Randomized trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet. 1998;352(9130):772–6.

    CAS  PubMed  Google Scholar 

  123. Heys SD, Walker LG, Smith I, et al. Enteral nutrition supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg. 1999;229(4):446–77.

    Google Scholar 

  124. Consensus recommendations from the U.S. summitt on immune-enhancing enteral therapy. JPEN J Parenter Enteral Nutr. 2001;25(2 Suppl):S1–S63.

    Google Scholar 

  125. Wong CS, Aly EH. The effects of enteral immunonutrition in upper gastrointestinal surgery: a systematic review and meta-analysis. Int J Surg. 2016;29:137–50.

    PubMed  Google Scholar 

  126. Moya P, Miranda E, Soriano-Irigaray L, et al. Perioperative immunonutrition in normo-nourished patients undergoing laparoscopic colorectal resection. Surg Endosc. 2016;30(11):4946–53.

    PubMed  Google Scholar 

  127. Moya P, Soriano-Irigaray L, Ramirez JM, et al. Perioperative standard oral nutrition supplements versus immunonutrition in patients undergoing colorectal resection in an enhanced recovery (ERAS) protocol: a multicenter randomized clinical trial (SONVI study). Medicine (Baltimore). 2016;95(21):e3704.

    CAS  Google Scholar 

  128. Zhang B, Najarali Z, Ruo L, et al. Effect of perioperative nutritional supplementation on postoperative complications-systematic review and meta-analysis. J Gastrointest Surg. 2019;23(8):1682–93.

    PubMed  Google Scholar 

  129. Gianotti L, Besselink MG, Sandini M, et al. Nutritional support and therapy in pancreatic surgery: a position paper of the international study group on pancreatic surgery (ISGPS). Surgery. 2018;164(5):1035–48.

    PubMed  Google Scholar 

  130. White JV, Guenter P, Jensen G, et al. Consensus statement: academy of nutrition and dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36(3):275–83.

    PubMed  Google Scholar 

  131. Kondrup J. Can food intake in hospitals be improved? Clin Nutr. 2001;20:153–60.

    Google Scholar 

  132. Blackburn GL, Bistrian BR, Maini BS, Schlamm HT, Smith MF. Nutritional and metabolic assessment of the hospitalized patient. JPEN J Parenter Enteral Nutr. 1977;1:11–22.

    CAS  PubMed  Google Scholar 

  133. Klein S, Kinney J, Jeejeebhoy K, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. JPEN J Parenter Enteral Nutr. 1977;21:133–56.

    Google Scholar 

  134. Rosenbaum K, Wang J, Pierson RN, et al. Time-dependent variation in weight and body composition in healthy adults. JPEN J Parenter Enteral Nutr. 2000;24:52–5.

    CAS  PubMed  Google Scholar 

  135. Keys A. Chronic undernutrition and starvation with notes on protein deficiency. JAMA. 1948;138:500–11.

    CAS  Google Scholar 

  136. Sacks GS, Dearman K, Replogle WH, et al. Use of subjective global assessment to identify nutritionassociated complications and death in long-term care facility residents. J Am Coll Nutr. 2000;19:570–7.

    CAS  PubMed  Google Scholar 

  137. Norman K, Stobaus N, Gonzalez MC, et al. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30:135–42.

    PubMed  Google Scholar 

  138. Hagan JC. Acute and chronic diseases. In: Mulner RM, editor. Encyclopedia of health services research, vol. 1. Thousand Oaks, CA: Sage; 2009. p. 25.

    Google Scholar 

  139. American Dietetic Association Evidence Analysis Library. Does serum prealbumin correlate with weight loss in four models of prolonged protein-energy restriction: anorexia nervosa, non-malabsorptive gastric partitioning bariatric surgery, calorie-restricted diets or starvation. http://www.adaevidencelibrary.com/conclusion.cfm?conclusion_statement_id=251313&highlight=prealbumin&home=1. Accessed 25 Mar 2020.

  140. American Dietetic Association Evidence Analysis Library. Does serum prealbumin correlate with nitrogen balance? http://www.Adaevidencelibrary.com/conclusion.cfm?conclusion_statement_id=251315&highlight=prealbumin&home=1. Accessed 25 Mar 2020

  141. American Dietetic Association Evidence Analysis Library. Does serum albumin correlate with weight loss in four models of prolonged protein-energy restriction: anorexia nervosa, non-malabsorptive gastric partitioning bariatric surgery, calorie-restricted diets or starvation. http://www.adaevidencelibrary.com/conclusion.cfm?conclusion_statement_id=251263&highlight=albumin&home=1. Accessed 25 Mar 2020

  142. American Dietetic Association Evidence Analysis Library. Does serum albumin correlate with nitrogen balance? http://www.Adaevidencelibrary.com/conclusion.cfm?conclusion_statement_id=251265&highlight=albumin&home=1. Accessed 25 Mar 2020

  143. Jensen GL, Cederholm T, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. JPEN J Parenter Enteral Nutr. 2019;43(1):32–40.

    PubMed  Google Scholar 

  144. Eglseer D, Hoedl M, Schoberer D. Malnutrition risk and hospital-acquired falls in older adults: a cross-sectional, multicenter study. Geriatr Gerontol Int. 2020;20(4):348–53.

    PubMed  PubMed Central  Google Scholar 

  145. Wei K, Nyunt MSZ, Gao Q, et al. Long-term changes in nutritional status are associated with functional and mortality outcomes among community-living older adults. Nutrition. 2019;66:180–6.

    PubMed  Google Scholar 

  146. Corwin HL, Gettinger A, Rodriguez RM, et al. Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 1999;27:2346–50.

    CAS  PubMed  Google Scholar 

  147. Wernerman J, Christopher KB, Annane D, et al. Metabolic support in the critically ill: a consensus of 19. Crit Care. 2019;23(1):318.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Latifi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latifi, R. (2021). Biology of Perioperative Nutrition: An Update. In: Latifi, R., Catena, F., Coccolini, F. (eds) Emergency General Surgery in Geriatrics . Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-62215-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62215-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62214-5

  • Online ISBN: 978-3-030-62215-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics