Skip to main content

Coronary Blood Flow Reserve and Myocardial Ischemia

  • Chapter
  • First Online:
Nuclear Cardiology
  • 897 Accesses

Abstract

Radionuclide myocardial perfusion imaging (MPI) using single-photon emission tomography (SPECT) or positron emission tomography (PET) is used worldwide in the assessment of patients with suspected or known coronary artery disease (CAD) [1–6]. In the recent decades, the better understanding of the coronary physiology and advances in technology have raised the possibility of noninvasive measurement of myocardial blood flow (MBF). The dynamic acquisition enables the absolute radiotracer quantification in mL/min/g and substantially increments the diagnostic and prognostic value of the nuclear studies [6–13]. This chapter will review the basic concepts of coronary physiology, the current evidence supporting MBF use in the clinical scenario, and the protocols for MFB acquisition with PET and SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

Coronary artery disease

CBF:

Coronary blood flow

CMD:

Coronary microvascular dysfunction

IWOS:

Ischemia without stenosis

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MFR:

Myocardial flow reserve

MPI:

Myocardial perfusion imaging

PET:

Positron emission tomography

SPECT:

Single-photon emission tomography

SWOI:

Stenosis without ischemia

References

  1. Wolk MJ, Bailey SR, Doherty JU, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(4):380–406. https://doi.org/10.1016/j.jacc.2013.11.009.

    Article  PubMed  Google Scholar 

  2. Hachamovitch R, Rozanski A, Shaw LJ, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32(8):1012–24. https://doi.org/10.1093/eurheartj/ehq500.

    Article  PubMed  Google Scholar 

  3. Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1995;26(3):639–47. https://doi.org/10.1016/0735-1097(95)00218-S.

    Article  CAS  PubMed  Google Scholar 

  4. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and cost-effectiveness. Circulation. 2002;105(7):823–9.

    Article  Google Scholar 

  5. Beanlands R, Chow B, Dick A, et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease – executive summary. Can J Cardiol. 2007;23(2):107–19.

    Article  CAS  Google Scholar 

  6. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2016;23(5):1187–226. https://doi.org/10.1007/s12350-016-0522-3.

    Article  Google Scholar 

  7. Carli MFD, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115(11):1464–80. https://doi.org/10.1161/CIRCULATIONAHA.106.629808.

    Article  PubMed  Google Scholar 

  8. Juneau D, Erthal F, Ohira H, et al. Clinical PET myocardial perfusion imaging and flow quantification. Cardiol Clin. 2016;34(1):69–85. https://doi.org/10.1016/j.ccl.2015.07.013.

    Article  PubMed  Google Scholar 

  9. Dorbala S, Di Carli MF, Beanlands RS, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61(2):176–84. https://doi.org/10.1016/j.jacc.2012.09.043.

    Article  PubMed  Google Scholar 

  10. Ghosh N, Rimoldi OE, Beanlands RSB, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984–95. https://doi.org/10.1093/eurheartj/ehq361.

    Article  PubMed  Google Scholar 

  11. Ziadi MC, deKemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–8. https://doi.org/10.1016/j.jacc.2011.01.065.

    Article  PubMed  Google Scholar 

  12. Ziadi MC, deKemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. https://doi.org/10.1007/s12350-011-9506-5.

    Article  PubMed  Google Scholar 

  13. Erthal F, Lima R, Wells RG, Ruddy TD. Quantification of myocardial blood flow with CZT SPECT imaging: is it ready for clinical use? Curr Cardiovasc Imaging Rep. 2017;10(10):34. https://doi.org/10.1007/s12410-017-9432-2.

    Article  Google Scholar 

  14. Heusch G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol. 2010;105(1):1–5. https://doi.org/10.1007/s00395-009-0074-7.

    Article  PubMed  Google Scholar 

  15. Kern MJ, Amir L, Jan-Willen B, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory. Circulation. 2006;114(12):1321–41. https://doi.org/10.1161/CIRCULATIONAHA.106.177276.

    Article  PubMed  Google Scholar 

  16. Attila F, Sinusas Albert J. Quantitative assessment of coronary microvascular function. Circ Cardiovasc Imaging. 2017;10(8):e006427. https://doi.org/10.1161/CIRCIMAGING.117.006427.

    Article  Google Scholar 

  17. Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol. 2009;193:161–88. https://doi.org/10.1007/978-3-540-89615-9_6.

    Article  CAS  Google Scholar 

  18. Shaw LJ, Hachamovitch R, Min JK, et al. Evolving, innovating, and revolutionary changes in cardiovascular imaging: We’ve only just begun! J Nucl Cardiol. 2018;253(3):758–68. https://doi.org/10.1007/s12350-018-1225-8.

    Article  Google Scholar 

  19. Ahmadi A, Stone GW, Leipsic J, et al. Association of coronary stenosis and plaque morphology with fractional flow reserve and outcomes. JAMA Cardiol. 2016;1:350–7.

    Article  Google Scholar 

  20. Shaw LJ, Mieres JH, Hendel RH, et al. Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: Results from the what is the optimal method for ischemia evaluation in women (WOMEN) trial. Circulation. 2011;124:1239–49.

    Article  Google Scholar 

  21. Berman DS, Kang X, Slomka PJ, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2007;14(4):521–8. https://doi.org/10.1016/j.nuclcard.2007.05.008.

    Article  Google Scholar 

  22. Lima RSL, Watson DD, Goode AR, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42(1):64–70.

    Article  Google Scholar 

  23. Fiechter M, Ghadri JR, Gebhard C, et al. Diagnostic value of 13N-Ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53(8):1230–4. https://doi.org/10.2967/jnumed.111.101840.

    Article  CAS  PubMed  Google Scholar 

  24. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24. https://doi.org/10.1161/CIRCULATIONAHA.111.050427.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6. https://doi.org/10.1016/j.jacc.2009.02.069.

    Article  PubMed  Google Scholar 

  26. Majmudar MD, Murthy VL, Shah RV, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging. 2015;16(8):900–9. https://doi.org/10.1093/ehjci/jev012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neglia D, Michelassi C, Trivieri MG, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105(2):186–93.

    Article  Google Scholar 

  28. Mc Ardle BA, Davies RA, Chen L, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging. 2014;7(6):930–7. https://doi.org/10.1161/CIRCIMAGING.114.002184.

    Article  PubMed  Google Scholar 

  29. Cecchi F, Olivotto I, Gistri R, et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35. https://doi.org/10.1056/NEJMoa025050.

    Article  CAS  PubMed  Google Scholar 

  30. Bravo PE, Bergmark BA, Vita T, et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy. Eur Heart J. 2018;39(4):316–23. https://doi.org/10.1093/eurheartj/ehx683.

    Article  CAS  PubMed  Google Scholar 

  31. Chih S, Chong AY, Erthal F, et al. PET assessment of Epicardial intimal disease and microvascular dysfunction in cardiac allograft vasculopathy. J Am Coll Cardiol. 2018;71(13):1444–56. https://doi.org/10.1016/j.jacc.2018.01.062.

    Article  PubMed  Google Scholar 

  32. Erthal F, Lima R, Wells RG, Ruddy TD. Quantification of myocardial blood flow with CZT spect imaging: is it ready for clinical use? | Fernanda Erthal | request pdf. Curr Cardiovasc Imaging Rep. 2017;10(34) https://doi.org/10.1007/s12410-017-9432-2.

  33. de Souza AC do AH, BKD G, Tedeschi AL, RSL L. Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: Relation to angiographic coronary artery disease. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2019; https://doi.org/10.1007/s12350-019-01775-z.

  34. Ben-Haim S, Murthy VL, Breault C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med. 2013;54(6):873–9. https://doi.org/10.2967/jnumed.112.109652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-Tetrofosmin: head-to-head comparison with 13N-Ammonia PET. J Nucl Med Off Publ Soc Nucl Med. 2016;57(12):1887–92. https://doi.org/10.2967/jnumed.115.165498.

    Article  CAS  Google Scholar 

  36. Shiraishi S, Sakamoto F, Tsuda N, et al. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera. Circ J Off J Jpn Circ Soc. 2015;79(3):623–31. https://doi.org/10.1253/circj.CJ-14-0932.

    Article  Google Scholar 

  37. Ben BF, Roubille F, Lattuca B, et al. SPECT myocardial perfusion Reserve in Patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med Off Publ Soc Nucl Med. 2015;56(11):1712–7. https://doi.org/10.2967/jnumed.114.143164.

    Article  CAS  Google Scholar 

  38. Wells RG, Marvin B, Poirier M, deKemp R, Klein R, Ruddy T. Myocardial blood flow measured with a multi-pinhole SPECT camera: in vivo comparison to Rb-82 PET. J Nucl Med. 2016;57(supplement 2):284.

    Google Scholar 

  39. Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med Off Publ Soc Nucl Med. 2018;59(2):273–93. https://doi.org/10.2967/jnumed.117.201368.

    Article  CAS  Google Scholar 

  40. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2016;23(3):606–39. https://doi.org/10.1007/s12350-015-0387-x.

    Article  Google Scholar 

  41. Lapeyre AC, Goraya TY, Johnston DL, Gibbons RJ. The impact of caffeine on vasodilator stress perfusion studies. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2004;11(4):506–11. https://doi.org/10.1016/j.nuclcard.2004.04.003.

    Article  Google Scholar 

  42. Kim C, Kwok YS, Heagerty P, Redberg R. Pharmacologic stress testing for coronary disease diagnosis: a meta-analysis. Am Heart J. 2001;142:934–44.

    Article  CAS  Google Scholar 

  43. Fallahi B, Beiki D, Eftekhari M, et al. High accuracy of myocardial perfusion imaging in patients with left bundle branch block: comparison of four interpretation approaches. Hell J Nucl Med. 2009;12(2):132–7.

    PubMed  Google Scholar 

  44. Iskandrian AE, Bateman TM, Belardinelli L, ADVANCE MPI. Investigators. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol. 2007;14(5):645–58.

    Article  Google Scholar 

  45. Kubo S, Tadamura E, Toyoda H, et al. Effect of caffeine intake on myocardial hyperemic flow induced by adenosine triphosphate and dipyridamole. J Nucl Med Off Publ Soc Nucl Med. 2004;45(5):730–8.

    CAS  Google Scholar 

  46. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13. https://doi.org/10.1161/CIRCULATIONAHA.109.915009.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Mallah MH, Sitek A, Moore SC, Di Carli M, Dorbala S. Assessment of myocardial perfusion and function with PET and PET/CT. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2010;17(3):498–513. https://doi.org/10.1007/s12350-010-9223-5.

    Article  Google Scholar 

  48. Hsiao E, Ali B, Blankstein R, et al. Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med Off Publ Soc Nucl Med. 2013;54(10):1748–54. https://doi.org/10.2967/jnumed.113.120063.

    Article  CAS  Google Scholar 

  49. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med Off Publ Soc Nucl Med. 1996;37(10):1701–12.

    CAS  Google Scholar 

  50. deKemp RA, Yoshinaga K, Beanlands RSB. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2007;14(3):380–97. https://doi.org/10.1016/j.nuclcard.2007.04.006.

    Article  Google Scholar 

  51. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2009;16(2):255–76. https://doi.org/10.1007/s12350-009-9052-6.

    Article  Google Scholar 

  52. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14(3):639–52. https://doi.org/10.1016/0735-1097(89)90105-8.

    Article  CAS  PubMed  Google Scholar 

  53. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50(1):151–61. https://doi.org/10.1016/s0008-6363(01)00202-4.

    Article  CAS  PubMed  Google Scholar 

  54. Tawakol A, Forgione MA, Stuehlinger M, et al. Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol. 2002;40(6):1051–8. https://doi.org/10.1016/s0735-1097(02)02069-7.

    Article  CAS  PubMed  Google Scholar 

  55. Prior JO, Schindler TH, Facta AD, et al. Determinants of myocardial blood flow response to cold pressor testing and pharmacologic vasodilation in healthy humans. Eur J Nucl Med Mol Imaging. 2007;34(1):20–7. https://doi.org/10.1007/s00259-006-0193-4.

    Article  PubMed  Google Scholar 

  56. Czernin J, Müller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88(1):62–9. https://doi.org/10.1161/01.cir.88.1.62.

    Article  CAS  PubMed  Google Scholar 

  57. Sawada S, Muzik O, Beanlands RS, Wolfe E, Hutchins GD, Schwaiger M. Interobserver and interstudy variability of myocardial blood flow and flow-reserve measurements with nitrogen 13 ammonia-labeled positron emission tomography. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 1995;2(5):413–22.

    CAS  Google Scholar 

  58. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3(6):623–40. https://doi.org/10.1016/j.jcmg.2010.04.007.

    Article  PubMed  Google Scholar 

  59. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med Off Publ Soc Nucl Med. 1995;36(11):2032–6.

    CAS  Google Scholar 

  60. Schindler TH, Nitzsche EU, Olschewski M, et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med Off Publ Soc Nucl Med. 2004;45(3):419–28.

    Google Scholar 

  61. Krivokapich J, Smith GT, Huang SC, et al. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation. 1989;80(5):1328–37. https://doi.org/10.1161/01.cir.80.5.1328.

    Article  CAS  PubMed  Google Scholar 

  62. Duvernoy CS, Meyer C, Seifert-Klauss V, et al. Gender differences in myocardial blood flow dynamics: lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999;33(2):463–70. https://doi.org/10.1016/s0735-1097(98)00575-0.

    Article  CAS  PubMed  Google Scholar 

  63. Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64(14):1464–75. https://doi.org/10.1016/j.jacc.2014.05.069.

    Article  PubMed  Google Scholar 

  64. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330(25):1782–8. https://doi.org/10.1056/NEJM199406233302503.

    Article  CAS  PubMed  Google Scholar 

  65. Beanlands RS, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol. 1995;26(6):1465–75. https://doi.org/10.1016/0735-1097(95)00359-2.

    Article  CAS  PubMed  Google Scholar 

  66. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995;91(7):1944–51.

    Article  Google Scholar 

  67. Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, et al. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36(1):103–9. https://doi.org/10.1016/s0735-1097(00)00697-5.

    Article  CAS  PubMed  Google Scholar 

  68. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100(8):813–9. https://doi.org/10.1161/01.cir.100.8.813.

    Article  PubMed  Google Scholar 

  69. Di Carli MF, Janisse J, Grunberger G, et al. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41(8):1387–93. https://doi.org/10.1016/s0735-1097(03)00166-9.

    Article  PubMed  Google Scholar 

  70. Di Carli MF, Charytan D, McMahon GT, et al. Coronary circulatory function in patients with the metabolic syndrome. J Nucl Med Off Publ Soc Nucl Med. 2011;52(9):1369–77. https://doi.org/10.2967/jnumed.110.082883.

    Article  CAS  Google Scholar 

  71. Ikuo Y, Tohru O, Shin-ichi M, et al. Reduced coronary flow Reserve in Hypercholesterolemic Patients without Overt Coronary Stenosis. Circulation. 1996;94(12):3232–8. https://doi.org/10.1161/01.CIR.94.12.3232.

    Article  Google Scholar 

  72. Prior JO, Quiñones MJ, Hernandez-Pampaloni M, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005;111(18):2291–8. https://doi.org/10.1161/01.CIR.0000164232.62768.51.

    Article  CAS  PubMed  Google Scholar 

  73. Valenta I, Dilsizian V, Quercioli A, et al. The influence of insulin resistance, obesity, and diabetes mellitus on vascular tone and myocardial blood flow. Curr Cardiol Rep. 2012;14(2):217–25. https://doi.org/10.1007/s11886-011-0240-z.

    Article  PubMed  Google Scholar 

  74. Hamasaki S, Suwaidi JA, Higano ST, et al. Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol. 2000;35(6):1654–60. https://doi.org/10.1016/s0735-1097(00)00594-5.

    Article  CAS  PubMed  Google Scholar 

  75. Charytan DM, Shelbert HR, Di Carli MF. Coronary microvascular function in early chronic kidney disease. Circ Cardiovasc Imaging. 2010;3(6):663–71. https://doi.org/10.1161/CIRCIMAGING.110.957761.

    Article  PubMed  Google Scholar 

  76. Murthy VL, Naya M, Foster CR, et al. Coronary vascular dysfunction and prognosis in patients with chronic kidney disease. JACC Cardiovasc Imaging. 2012;5(10):1025–34. https://doi.org/10.1016/j.jcmg.2012.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Parkash R, deKemp RA, Ruddy TD, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2004;11(4):440–9. https://doi.org/10.1016/j.nuclcard.2004.04.005.

    Article  CAS  Google Scholar 

  78. Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med Off Publ Soc Nucl Med. 2014;55(2):248–55. https://doi.org/10.2967/jnumed.113.121442.

    Article  Google Scholar 

  79. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve associates with adverse cardiovascular events independently of luminal angiographic severity, and modifies the effect of early revascularization. Circulation. 2015;131(1):19–27. https://doi.org/10.1161/CIRCULATIONAHA.114.011939.

    Article  PubMed  Google Scholar 

  80. Fukushima K, Javadi MS, Higuchi T, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med Off Publ Soc Nucl Med. 2011;52(5):726–32. https://doi.org/10.2967/jnumed.110.081828.

    Article  Google Scholar 

  81. Farhad H, Dunet V, Bachelard K, et al. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging. 2013;14(12):1203–10. https://doi.org/10.1093/ehjci/jet068.

    Article  PubMed  Google Scholar 

  82. de Souza AC do AH, BKD G, Tedeschi A, RSL L. Quantification of coronary flow reserve with CZT gamma camera in the evaluation of multivessel coronary disease. Arq Bras Cardiol. 2018;111(4):635–7. https://doi.org/10.5935/abc.20180196.

    Article  Google Scholar 

Download references

Conflict of Interest

There are no conflicts of interest.

Financial Disclosure

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erthal, F., Lima, R. (2021). Coronary Blood Flow Reserve and Myocardial Ischemia. In: Mesquita, C.T., Rezende, M.F. (eds) Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-62195-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62195-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62194-0

  • Online ISBN: 978-3-030-62195-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics