Skip to main content

Non-nuclear Cardiac Imaging Modalities: CT and MRI

  • Chapter
  • First Online:
Nuclear Cardiology

Abstract

Cardiovascular magnetic resonance (CMR) and coronary computed tomography (CCT) are established cardiovascular image diagnosis methods and becoming routine in the clinical investigation of cardiomyopathies.

CMR is especially attractive because images are acquired without application of ionizing radiation, and it has excellent tissue contrast resolution that allows quantifying ventricular function and volumes and assessing cardiovascular anatomy, myocardial perfusion, and viability, all mandatory for coronary artery disease evaluation. CMR has advanced significantly in the setting of valvular heart disease, and it became essential in the assessment of cardiomyopathies, particularly infiltrative, inflammatory, and fibrosing diseases. CMR continues to be the preferred imaging modality for the investigation of masses and tumors as well as pericardium diseases.

New multi-slice computed tomography scanners with high spatial and temporal resolution allow us today to image vascular structures in three-dimensional fashion non-invasively and with unprecedented precision. Coronary artery calcium score (CACS) is currently considered a major risk stratification tool in cardiovascular medicine, and with strong recommendation for its use in several guidelines of the most important cardiology societies in the world, furthermore, coronary CTA (CCTA) allows coronary lumen visualization and stenosis quantification accurately and also is able to characterize the components of coronary atherosclerotic plaque and quantify plaque burden. Recently, myocardial perfusion computed tomography (MPCT) and fraction flow reserve-computed tomography (FFR-CT) emerge as promising techniques for functional evaluation of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance. J Am Coll Cardiol. 2010 Jun;55(23):2614–62.

    Article  PubMed  Google Scholar 

  2. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25:1940–65.

    Article  PubMed  Google Scholar 

  3. Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging* * developed in accordance with the principles and methodology outlined by ACCF: Patel MR, Spertus JA, Brindis RG. J Am Coll Cardiol. 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  4. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105(4):539–42.

    Article  PubMed  Google Scholar 

  5. Hussain ST, Paul M, Plein S, Mccann GP, Shah AM, Marber MS, et al. Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. J Cardiovasc Magn Reson. 2012;14(1):1.

    Article  Google Scholar 

  6. Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J. 2017;38:991–8.

    PubMed  Google Scholar 

  7. Miller S, May AE. Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. JCMG. 2009;2(4):424–33.

    Google Scholar 

  8. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, et al. Adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115(13):1669–776.

    Article  Google Scholar 

  9. Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47(7):1427–32.

    Article  PubMed  Google Scholar 

  10. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Greenwood JP, Maredia N, Radjenovic A, Brown JM, Nixon J, Farrin AJ, et al. Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE-MARC study. Trials. 2009;10:62.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med. 2019;380(25):2418–28.

    Article  PubMed  Google Scholar 

  13. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen E-L, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999 Nov 9;100(19):1992–2002.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas A, Michael D. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361:374–9.

    Article  Google Scholar 

  15. As NYH. The use of contrast-enhanced magnetic resonance imaging. N Engl J Med. 2000;343:1445–53.

    Article  Google Scholar 

  16. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97(8):765–72.

    Article  CAS  PubMed  Google Scholar 

  17. Pasupathy S, Tavella R, Beltrame JF. Myocardial infarction with nonobstructive coronary arteries (MINOCA): the past, present, and future management. Circulation. 2017;135(16):1490–3.

    Article  PubMed  Google Scholar 

  18. Tamis JE, Reynolds HR. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease. Circulation. 2019;139:1–18.

    Google Scholar 

  19. Moon JCC. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart. 2004;90(6):645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maron MS, Lesser JR, Maron BJ. Management implications of massive left ventricular hypertrophy in hypertrophic cardiomyopathy significantly underestimated by echocardiography but identified by cardiovascular magnetic resonance. Am J Cardiol. 2010;105(12):1842–3.

    Article  PubMed  Google Scholar 

  21. Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54(3):220–8.

    Article  PubMed  Google Scholar 

  22. Maron MS, Maron BJ. Clinical impact of contemporary cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Circulation. 2015;132(4):292–8.

    Article  PubMed  Google Scholar 

  23. Rudolph A, Abdel-Aty H, Bohl S, Boyé P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy. Relation to remodeling. J Am Coll Cardiol. 2009;53(3):284–91.

    Article  PubMed  Google Scholar 

  24. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–74.

    Article  PubMed  Google Scholar 

  25. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95.

    Article  PubMed  Google Scholar 

  26. Dubrey S, Falk RH. Amyloidosis and the heart. Br J Cardiol. 1995;2(7):193–9.

    Google Scholar 

  27. Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94(8):1008–10.

    Article  CAS  PubMed  Google Scholar 

  28. Austin BA, Tang WHW, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2(12):1369–77.

    Article  PubMed  Google Scholar 

  29. Banypersad SM. The evolving role of cardiovascular magnetic resonance imaging in the evaluation of systemic amyloidosis. Magn Reson Insights. 2019;12: https://doi.org/10.1177/1178623X19843519.

  30. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11(7):1305–24.

    Article  PubMed  Google Scholar 

  31. Smedema JP, Snoep G, Van Kroonenburgh MPG, Van Geuns RJ, Dassen WRM, Gorgels AP, et al. Cardiac involvement in patients with pulmonary sarcoidosis assessed at two university medical centers in the Netherlands. Chest. 2005;128(1):30–5.

    Article  PubMed  Google Scholar 

  32. Schatka I, Bengel FM. Imaging of cardiac sarcoidosis. J Nucl Med. 2013;1:1–8.

    Google Scholar 

  33. Dubrey SW, Falk RH. Diagnosis and management of cardiac sarcoidosis. Prog Cardiovasc Dis. 2010;52(4):336–46.

    Article  PubMed  Google Scholar 

  34. Uusimaa P, Ylitalo K, Anttonen O, Kerola T, Virtanen V, Pääkkö E, et al. Ventricular tachyarrhythmia as a primary presentation of sarcoidosis. Europace. 2008;10(6):760–6.

    Article  PubMed  Google Scholar 

  35. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, Kazemian P, Kwong RY, Tokuda M, Skali H, Padera R, Hainer J, Stevenson WG, Dorbala S MDC, Blankstein R, Osborne M, Naya M, Waller A, Kim CK, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–36.

    Google Scholar 

  36. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zürn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–11.

    Article  PubMed  Google Scholar 

  37. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, et al. A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging. 2003;18(1):33–9.

    Article  PubMed  Google Scholar 

  40. Westwood MA, Anderson LJ, Firmin DN, Gatehouse PD, Lorenz CH, Wonke B, et al. Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue Iron in thalassemia. J Magn Reson Imaging. 2003;18(5):616–20.

    Article  PubMed  Google Scholar 

  41. Moonen M, Lancellotti P. Update on myocarditis. Rev Med Liege. 2018;73(5–6):269–76.

    CAS  PubMed  Google Scholar 

  42. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White paper. J Am Coll Cardiol. 2009;53(17):1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abdel-Aty H, Boyé P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45(11):1815–22.

    Article  PubMed  Google Scholar 

  44. Rochitte CE, Oliveira PF, Andrade JM, Ianni BM, Parga JR, Ávila LF, et al. Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas’ disease: a marker of disease severity. J Am Coll Cardiol. 2005;46(8):1553–8.

    Article  PubMed  Google Scholar 

  45. Uellendahl M, de Siqueira MEM, Calado EB, Kalil-Filho R, Sobral D, Ribeiro C, et al. Cardiac magnetic resonance-verified myocardial fibrosis in Chagas disease: clinical correlates and risk stratification. Arq Bras Cardiol. 2016;107:460–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Senra T, Ianni BM, Costa ACP, Mady C, Martinelli-Filho M, Kalil-Filho R, et al. Long-term prognostic value of myocardial fibrosis in patients with Chagas cardiomyopathy. J Am Coll Cardiol. 2018;72(21):2577–87.

    Article  PubMed  Google Scholar 

  47. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;112(18):2821–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cawley PJ, Maki JH, Otto CM. Cardiovascular magnetic resonance imaging for valvular heart disease. Technique and validation. Circulation. 2009;119(3):468–78.

    Article  PubMed  Google Scholar 

  49. Christiansen JP, Karamitsos TD, Myerson SG. Assessment of valvular heart disease by cardiovascular magnetic resonance imaging: a review. Hear Lung Circ. 2011;20(2):73–82.

    Article  Google Scholar 

  50. Eichenberger AC, Jenni R, Von Schulthess GK. Aortic valve pressure gradients in patients with aortic valve stenosis: quantification with velocity-encoded cine MR imaging. Am J Roentgenol. 1993;160(5):971–7.

    Article  CAS  Google Scholar 

  51. Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65(11):1078–88.

    Article  PubMed  Google Scholar 

  52. Siqueira ME, Narula J, Sanz J, Cham M, Jacobi A, Macaluso F. Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging. 2015;7(9):896–905.

    Google Scholar 

  53. Beghetti M, Gow RM, Haney I, Mawson J, Williams WG, Freedom RM. Pediatric primary benign cardiac tumors: a 15-year review. Am Heart J. 1997;134(6):1107–14.

    Article  CAS  PubMed  Google Scholar 

  54. Motwani M, Chb M, Kidambi A, Bch B, Herzog BA, Uddin A, et al. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268(1):26–43.

    Article  PubMed  Google Scholar 

  55. Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson. 2009;11:14.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aboulhosn JA, Fuller S, Bozkurt B, Gurvitz M, Broberg CS, Khairy P, et al. AHA/ACC guideline for the management of adults with congenital heart disease ACC/AHA task force members. J Am Coll Cardiol. 2019 Apr 2;73(12):1494–563.

    Google Scholar 

  57. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Robinson BL, Kwong RY, Varma PK, Wolfe M, Couper G. Magnetic resonance imaging of complex partial anomalous pulmonary venous return in adults. Circulation. 2014;129(1):9–11.

    Article  Google Scholar 

  59. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31(7):794–805.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rajiah P, Kanne JP. Cardiac MRI: Part 1, cardiovascular shunts. Am J Roentgenol. 2011;197(4):603–20.

    Article  Google Scholar 

  61. Indik JH, Gimbel JR, Abe H, Alkmim-Teixeira R, Birgersdotter-Green U, Clarke GD, et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Hear Rhythm. 2017;14(7):e97–153.

    Article  Google Scholar 

  62. Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I – analytical validation and clinical qualification. J Cardiovasc Magn Reson. 2018;20(1):1–23.

    Article  Google Scholar 

  63. Nazarian S, Hansford R, Roguin A, Goldsher D, Zviman MM. A prospective evaluation of a protocol for magnetic resonance. Ann Intern Med. 2011;155:415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Russo RJ, Costa HS, Silva PD, Anderson JL, Arshad A, Biederman RWW, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med. 2017;376(8):755–64.

    Article  PubMed  Google Scholar 

  65. Nazarian S, Hansford R, Rahsepar AA, Weltin V, McVeigh D, Ipek EG, et al. Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med. 2017;377(26):2555–64.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zampieri P, Colombo A, Almagor Y, Maiello L, Finci L. Results of coronary stenting of ostial lesions. Am J Cardiol. 1994;73(12):901–3.

    Article  CAS  PubMed  Google Scholar 

  67. Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices. Circulation. 2007;116(24):2878–91.

    Article  PubMed  Google Scholar 

  68. Vliegen HW, van Straten A, de Roos A, Roest AAW, Schoof PH, Zwinderman AH, et al. Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of fallot. Circulation. 2002;106(13):1703–7.

    Article  PubMed  Google Scholar 

  69. Randall PA, Kohman LJ, Scalzetti EM, Szeverenyi NM, Panicek DM. Magnetic resonance imaging of prosthetic cardiac valves in vitro and in vivo. Am J Cardiol. 1988;62(13):973–6.

    Article  CAS  PubMed  Google Scholar 

  70. Rajappan K, Bellenger NG, Melina G, Di Terlizzi M, Yacoub MH, Sheridan DJ, et al. Assessment of left ventricular mass regression after aortic valve replacement – cardiovascular magnetic resonance versus M-mode echocardiography. Eur J Cardio-thoracic Surg. 2003;24(1):59–65.

    Article  Google Scholar 

  71. Mackay-Wiggan JM, Cohen DJ, Grossman ME. Nephrogenic fibrosing dermopathy (scleromyxedema-like illness of renal disease). J Am Acad Dermatol. 2003;48(1):55–60.

    Article  PubMed  Google Scholar 

  72. Carolina De Souza A, Igreja M, De K, Mesquita C, Cowper SE, Carvalho Costa IM. Nephrogenic systemic fibrosis: concepts and perspectives * Fibrose nefrogênica sistêmica: conceitos e perspectivas. An Bras Dermatol. 2012;87(4):597–607.

    Article  Google Scholar 

  73. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  74. Knopp EA, Cowper SE. Nephrogenic systemic fibrosis: early recognition and treatment. Semin Dial. 2008;21(2):123–8.

    Article  PubMed  Google Scholar 

  75. Patel MR, White RD, Abbara S, Bluemke DA, Herfkens RJ, Picard M, et al. 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American college of radiology appropriateness criteria committee and the American college of cardiology foundation appropriate use c. J Am Coll Cardiol. 2013;61(21):2207–31.

    Article  PubMed  Google Scholar 

  76. Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the north American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr. 2016;10(6):435–49.

    Article  PubMed  Google Scholar 

  77. Azevedo CF, Rochitte CE, Lima JAC. Coronary artery calcium score and coronary computed tomographic angiography for cardiovascular risk stratification. Arq Bras Cardiol. 2012;98(6):559–68.

    Article  CAS  PubMed  Google Scholar 

  78. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  79. Hong C, Bae KT, Pilgram TK, Suh J, Bradley D. Coronary artery calcium measurement with multi–detector row CT: in vitro assessment of effect of radiation dose. Radiology. 2002;225(3):901–6.

    Article  CAS  PubMed  Google Scholar 

  80. Yoon H-C, Greaser LE, Mather R, Sinha S, McNitt-Gray MF, Goldin JG. Coronary artery calcium: alternate methods for accurate and reproducible quantitation. Acad Radiol. 1997 Oct;4(10):666–73.

    Article  CAS  PubMed  Google Scholar 

  81. McClelland RL, Chung H, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium by race, gender, and age. Circulation. 2005;113(1):30–7.

    Article  PubMed  Google Scholar 

  82. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain. J Am Coll Cardiol. 2007;49(3):378–402.

    Article  PubMed  Google Scholar 

  83. Bittner VA. The new 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. Circulation. 2019; https://doi.org/10.1161/CIRCULATIONAHA.119.040625.

  84. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the Management of Blood Cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019;73(24):e285–350.

    Article  PubMed  Google Scholar 

  85. Taylor AJ, Cerqueira M, Hodgson JMB, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate use criteria for cardiac computed tomography. J Cardiovasc Comput Tomogr. 2010;4(6):407.e1–407.e33.

    Article  Google Scholar 

  86. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease. Results from the prospective multicenter ACCURACY (assessment by Coro). J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  87. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  CAS  PubMed  Google Scholar 

  88. Kramer CM, Allen JM, Lockwood R, Marine JE. ACCF / AHA / ASE / ASNC / HFSA / HRS / SCAI / SCCT / SCMR / STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease. JAC. 2014;63(4):380–406.

    Google Scholar 

  89. Rybicki FJ, Udelson JE, Peacock WF, Goldhaber SZ, Isselbacher EM, Kazerooni E, et al. 2015 ACR/ACC/AHA/AATS/ACEP/ASNC/NASCI/SAEM/SCCT/SCMR/SCPC/SNMMI/STR/STS appropriate utilization of cardiovascular imaging in emergency department patients with chest pain: a joint document of the American College of Radiology Appropriateness Criteria Comm. J Am Coll Cardiol. 2016;67(7):853–79.

    Article  PubMed  Google Scholar 

  90. Hoffmann U, Bamberg F, Chae CU, Nichols JH, Rogers IS, Seneviratne SK, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain. The ROMICAT (rule out myocardial infarction using computer assisted tomography) trial. J Am Coll Cardiol. 2009;53(18):1642–50.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schertler T, Frauenfelder T, Stolzmann P, Scheffel H, Desbiolles L, Marincek B, et al. Triple rule-out CT in patients with suspicion of acute pulmonary embolism. Findings and Accuracy1. Acad Radiol. 2009;16(6):708–17.

    Article  PubMed  Google Scholar 

  92. Andreini D, Pontone G, Mushtaq S, Pepi M, Bartorelli AL. Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am J Cardiol. 2010;105(5):645–55.

    Article  PubMed  Google Scholar 

  93. Romagnoli A, Patrei A, Mancini A, Arganini C, Vanni S, Sperandio M, et al. Diagnostic accuracy of 64-slice CT in evaluating coronary artery bypass grafts and of the native coronary arteries Accuratezza diagnostica della TC multidetettore a 64 strati nella valutazione non invasiva dei bypass aorto-coronarici e della progressione d. Radiol Med. 2010;115(8):1167–78.

    Article  CAS  PubMed  Google Scholar 

  94. Maurovich-horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11(7):390–402.

    Article  PubMed  Google Scholar 

  95. Puchner SB, Liu T, Mayrhofer T, Truong QA, Lee H, Fleg JL, et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol. 2014;64(7):684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  97. Fernandes FV, Cury RC. Evaluation of myocardial ischemia by multiple detector computed tomography. Arq Bras Cardiol – Imagem Cardiovasc. 2014;28(1):36–44.

    Google Scholar 

  98. Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve. Am J Cardiol. 2015;116(9):1469–78.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chen MY, Rochitte CE, Arbab-Zadeh A, Dewey M, George RT, Miller JM, et al. Prognostic value of combined CT angiography and myocardial perfusion imaging versus invasive coronary angiography and nuclear stress perfusion imaging in the prediction of major adverse cardiovascular events: the CORE320 multicenter study. Radiology. 2017;284(1):55–65.

    Article  PubMed  Google Scholar 

  100. Cury RC, Kitt TM, Feaheny K, Blankstein R, Ghoshhajra BB, Budoff MJ, et al. A randomized, multicenter, multivendor study of myocardial perfusion imaging with regadenoson CT perfusion vs single photon emission CT. J Cardiovasc Comput Tomogr. 2015;9(2):103–112.e2.

    Article  PubMed  Google Scholar 

  101. Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, et al. 1-year outcomes of FFR-CT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol. 2016;68(5):435–45.

    Article  PubMed  Google Scholar 

  102. Curzen NP, Nolan J, Zaman AG, Nørgaard BL, Rajani R. Does the routine availability of CT–derived FFR influence Management of Patients with Stable Chest Pain Compared to CT angiography alone? The FFRCTRIPCORD study. JACC Cardiovasc Imaging. 2016;9(10):1188–94.

    Article  PubMed  Google Scholar 

  103. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65(8):846–55.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–70.

    Article  PubMed  Google Scholar 

  105. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372(14):1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Newby D. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385(9985):2383–91.

    Article  Google Scholar 

  107. Investigators SCOT-HEART, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379(10):924–33.

    Article  Google Scholar 

  108. Hoffmann U, Ferencik M, Udelson JE, Picard MH, Truong QA, Patel MR, et al. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain. Circulation. 2017;135(24):2320–32.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chaitman BR, Senior R, Sendón JL, Alexander KP, Lopes RD, Shaw LJ, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1–12.

    Google Scholar 

  110. Boden WE, O’Rourke RA, Teo KK B.Ch., Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL Pharm.D., Bernard R. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    Google Scholar 

  111. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, Orchard TJ, Chaitman BR, Genuth SM, Goldberg SH, Hlatky MA, Jones TLZ, Molitch ME, Nesto RW BES. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.

    Google Scholar 

  112. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.

    Article  PubMed  CAS  Google Scholar 

  113. Shaw LJ, Berman DS, Maron DJ, Mancini GBJ, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.

    Article  PubMed  Google Scholar 

  114. Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Alexander KP, Senior R, et al. Baseline characteristics and risk profiles of participants in the ISCHEMIA randomized clinical trial. JAMA Cardiol. 2019;4(3):273–86.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Rochitte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rochitte, C.E., Pacheco, A.B. (2021). Non-nuclear Cardiac Imaging Modalities: CT and MRI. In: Mesquita, C.T., Rezende, M.F. (eds) Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-62195-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62195-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62194-0

  • Online ISBN: 978-3-030-62195-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics