Skip to main content

Nuclear Medicine Tools for Cardiac Damage Diagnosis in Oncology

  • Chapter
  • First Online:
Nuclear Cardiology

Abstract

In the last decades, there have been great advances made in cancer diagnosis and treatment, giving a reduction in mortality, an increase in survival, and a better quality of life in cancer patients. In addition, the progress made in cancer treatments has resulted in increased exposure to the cardiotoxic effects of radio and chemotherapies. Screening for the occurrence of cardiotoxicity (CTX) is highly recommended before, during, and after the end of treatment. A number of methods and diagnostic indexes have been recommended for detecting CTX and planning therapeutic strategies. Measuring left ventricular ejection fraction (LVEF) through a conventional echocardiogram is the most used strategy, although it is a poorly refined parameter, often detectable only in the later stages. Thus, it is necessary to perform a more sensitive and reliable imaging test to detect earlier CTX (Felker et al., N Engl J Med 342:1077–84, 2000; Barros-Gomes et al., Cardio-Oncology 2:5, 2016). Cardiac nuclear medicine imaging techniques have proved extremely useful for both identifying subclinical disease in the context of CTX and assessing late CTX by LVEF measurement. In this chapter, we will discuss on nuclear imaging techniques and molecular radiotracers using for detection of CTX in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Filho RK, Hajjar LA, Bacal F, et al. I Diretriz Brasileira de Cardio-Oncologia da Sociedade Brasileira de Cardiologia. Arq Bras Cardiol. 2011;96:1–52.

    Article  Google Scholar 

  2. Herrmann J, Yang EH, Iliescu CA, Cilingiroglu M, Charitakis K, Hakeem A, et al. Vascular toxicities of Cancer therapies: the old and the new – an evolving avenue. Circulation. 2016;133(13):1272–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jain D, Ahmad T, Cairo M, Aronow W. Cardiotoxicity of cancer chemotherapy: identification, prevention and treatment. Ann Transl Med. 2017;5(17):348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Awadalla M, Hassan MZO, Alvi RM, Neilan TG. Advanced imaging modalities to detect cardiotoxicity. Curr Probl Cancer. 2018;42(4):386–96.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kahanda MG, Hanson CA, Patterson B, Bourque JM. Nuclear cardio-oncology: from its foundation to its future. J Nucl Cardiol. 2019; https://doi.org/10.1007/s12350-019-01655-6.

  6. Curigliano G, Cardinale D, Suter T, Plataniotis G, De Azambuja E, Sandri MT, et al. Cardio Oncology – ESMO. Ann Oncol. 2012;

    Google Scholar 

  7. Negishi T, Negishi K. Echocardiographic evaluation of cardiac function after cancer chemotherapy. J Echocardiogr. 2018;16(1):20–7.

    Article  PubMed  Google Scholar 

  8. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84.

    Article  CAS  PubMed  Google Scholar 

  9. Barros-Gomes S, Herrmann J, Mulvagh SL, Lerman A, Lin G, Villarraga HR. Rationale for setting up a cardio-oncology unit: our experience at Mayo Clinic. Cardio-Oncology. 2016;2(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simoni LJC, Brandão SCS. New imaging methods for detection of drug-induced cardiotoxicity in cancer patients. Curr Cardiovasc Imaging Rep. 2017;10:18.

    Article  Google Scholar 

  11. Mahabadi AA, Rischpler C. Cardiovascular imaging in cardio-oncology. J Thorac Dis. 2018;10:S4351.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol. 1996;77(10):843–50.

    Article  PubMed  Google Scholar 

  13. Panjrath GS, Jain D. Monitoring chemotherapy-induced cardiotoxicity: role of cardiac nuclear imaging. J Nucl Cardiol. 2006;13(3):415–26.

    Article  PubMed  Google Scholar 

  14. de Geus-Oei L-F, Mavinkurve-Groothuis AMC, Bellersen L, Gotthardt M, WJG O, Kapusta L, et al. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med Technol. 2013;41(3):170–81.

    PubMed  CAS  Google Scholar 

  15. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82(6):1109–18.

    Article  CAS  PubMed  Google Scholar 

  16. Nousiainen T, Jantunen E, Vanninen E, Hartikainen J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer. 2002;86(11):1697–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709.

    Article  CAS  PubMed  Google Scholar 

  18. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.

    Article  CAS  PubMed  Google Scholar 

  19. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  CAS  PubMed  Google Scholar 

  20. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 2009;10(4):391–9.

    Article  CAS  PubMed  Google Scholar 

  21. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J Clin Oncol. Am Soc Clin Oncol. 2017;35:893–911.

    Article  Google Scholar 

  22. DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med. 1993;34(11):1871–6.

    CAS  PubMed  Google Scholar 

  23. Groch MW, DePuey EG, Belzberg AC, Erwin WD, Kamran M, Barnett CA, et al. Planar imaging versus gated blood-pool SPECT for the assessment of ventricular performance: a multicenter study. J Nucl Med. 2001;42(12):1773–9.

    CAS  PubMed  Google Scholar 

  24. Groch MW, Marshall RC, Erwin WD, Schippers DJ, Barnett CA, Leidholdt EM. Quantitative gated blood pool SPECT for the assessment of coronary artery disease at rest. J Nucl Cardiol. 1998;5(6):567–73.

    Article  CAS  PubMed  Google Scholar 

  25. Calnon DA, Kastner RJ, Smith WH, Segalla D, Beller GA, Watson DD. Validation of a new counts-based gated single photon emission computed tomography method for quantifying left ventricular systolic function: comparison with equilibrium radionuclide angiography. J Nucl Cardiol. 1997;4(6):464–71.

    Article  CAS  PubMed  Google Scholar 

  26. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol. 2004;11(5):603–16.

    Article  PubMed  Google Scholar 

  27. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  28. Olmos RAV, te Bokkel Huinink WW, te Hoeve RFA, van Tinteren H, Bruning PF, van Vlies B, et al. Assessment of anthracycline-related myocardial adrenergic derangement by [123i]metaiodobenzylguanidine scintigraphy. Eur J Cancer. 1995;31(1):26–31.

    Article  Google Scholar 

  29. Stokkel MPM, de Wit-van der Veen LJ, Boekhout A. I-123-MIBG myocardial imaging in trastuzumab-based cardiotoxicity: the first experience. Nucl Med Commun. 2013;34(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  30. Guimarães SLP de MM, Brandão SCS, Andrade LR, Maia RJC, Markman Filho B. Cardiac sympathetic hyperactivity after chemotherapy: early sign of cardiotoxicity? Arq Bras Cardiol. 2015;105(3):228–34.

    Google Scholar 

  31. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC: Cardiovasc Imaging. 2010;3:92–100.

    Google Scholar 

  32. Meredith IT, Eisenhofer G, Lambert GW, Dewar EM, Jennings GL, Esler MD. Cardiac sympathetic nervous activity in congestive heart failure: evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation. 1993;88(1):136–45.

    Article  CAS  PubMed  Google Scholar 

  33. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34(8):1287–93.

    CAS  PubMed  Google Scholar 

  34. Münch G, Ziegler S, Nguyen N, Hartmann F, Watzlowik P. Schwaiger M. Scintigraphic evaluation of cardiac autonomic innervation. J Nucl Cardiol. Springer New York LLC. 1996;3:265–77.

    Google Scholar 

  35. Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med. 1997;38(5):780–5.

    CAS  PubMed  Google Scholar 

  36. Goldstein DS, Eisenhofer G, Dunn BB, Armando I, Lenders J, Grossman E, et al. Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol. 1993;22(7):1961–71.

    Article  CAS  PubMed  Google Scholar 

  37. Delforge J, Syrota A, Lançon JP, Nakajima K, Loc’h C, Janier M, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med. 1991;32(4):739–48.

    CAS  PubMed  Google Scholar 

  38. Law MP. Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol. 1993;109(4):1101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carrió I, Estorch M, Berná L, Germá JR, Alonso C, Ojeda B, et al. Assessment of anthracycline-induced myocardial damage by quantitative indium 111 myosin-specific monoclonal antibody studies. Eur J Nucl Med. 1991;18(10):806–12.

    Article  PubMed  Google Scholar 

  40. Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden J-L, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med. 2004;45(5):842–8.

    CAS  PubMed  Google Scholar 

  41. Panjrath GS, Patel V, Valdiviezo CI, Narula N, Narula J, Jain D. Potentiation of doxorubicin cardiotoxicity by Iron loading in a rodent model. J Am Coll Cardiol. 2007;49(25):2457–64.

    Article  CAS  PubMed  Google Scholar 

  42. Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12(3):236–44.

    Article  CAS  PubMed  Google Scholar 

  43. de Korte MA, de Vries EGE, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WTA, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046–51.

    Article  PubMed  CAS  Google Scholar 

  44. Henry ML, Niu J, Zhang N, Giordano SH, Chavez-MacGregor M. Cardiotoxicity and cardiac monitoring among chemotherapy-treated breast Cancer patients. JACC Cardiovasc Imaging. 2018;11(8):1084–93.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chien KR. Herceptin and the heart – a molecular modifier of cardiac failure. N Engl J Med. 2006;354(8):789–90.

    Article  CAS  PubMed  Google Scholar 

  46. Bartsch R, Wenzel C, Steger GG. Trastuzumab in the management of early and advanced stage breast cancer. Biologics. 2007;1(1):19–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Behr TM, Behe M, Wormann B. Trastuzumab and breast cancer. N Engl J Med. 2001;345(13):995–6.

    Article  CAS  PubMed  Google Scholar 

  48. Perik PJ, Lub-De Hooge MN, Gietema JA, Van Der Graaf WTA, De Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24(15):2276–82.

    Article  CAS  PubMed  Google Scholar 

  49. Kongbundansuk S, Hundley WG. Noninvasive imaging of cardiovascular injury related to the treatment of cancer. JACC: Cardiovasc Imaging. Elsevier Inc. 2014;7:824–38.

    Google Scholar 

  50. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15.

    Article  CAS  PubMed  Google Scholar 

  51. Rutqvist LE, Lax I, Fornander T, Johansson H. Cardiovascular mortality in a randomized trial of adjuvant radiation therapy versus surgery alone in primary breast cancer. Int J Radiat Oncol Biol Phys. 1992;22(5):887–96.

    Article  CAS  PubMed  Google Scholar 

  52. Donnellan E, Phelan D, McCarthy CP, Collier P, Desai M, Griffin B. Radiation-induced heart disease: a practical guide to diagnosis and management. Cleve Clin J Med. 2016;83(12):914–22.

    Article  PubMed  Google Scholar 

  53. Adams MJ, Lipshultz SE, Schwartz C, Fajardo LF, Coen V, Constine LS. Radiation-associated cardiovascular disease: manifestations and management. Semin Radiat Oncol. 2003;13(3):346–56.

    Article  PubMed  Google Scholar 

  54. Boivin JF, Hutchison GB, Lubin JH, Mauch P. Coronary artery disease mortality in patients treated for Hodgkin’s disease. Cancer. 1992;69(5):1241–7.

    Article  CAS  PubMed  Google Scholar 

  55. Gayed IW, H. Helen Liuet al. The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer. J Nucl Med. 2006;47(11):1756–62.

    PubMed  Google Scholar 

  56. Lind PA, Pagnanelli R, Marks LB, Borges-Neto S, Hu C, Zhou SM, et al. Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution. Int J Radiat Oncol Biol Phys. 2003;55(4):914–20.

    Article  PubMed  Google Scholar 

  57. Hardenbergh PH, Munley MT, Bentel GC, Kedem R, Borges-Neto S, Hollis D, et al. Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: preliminary results. Int J Radiat Oncol Biol Phys. 2001;49(4):1023–8.

    Article  CAS  PubMed  Google Scholar 

  58. Zellars R, Bravo PE, Tryggestad E, Hopfer K, Myers L, Tahari A, et al. SPECT analysis of cardiac perfusion changes after whole-breast/chest wall radiation therapy with or without active breathing coordinator: results of a randomized phase 3 trial. Int J Radiat Oncol Biol Phys. 2014;88(4):778–85.

    Article  PubMed  Google Scholar 

  59. Gardner SF, Lazarus HM, et al. High-dose cyclophosphamide-induced myocardial damage during BMT: assessment by positron emission tomography. Bone Marrow Transplant. 1993;12(2):139–44.

    CAS  PubMed  Google Scholar 

  60. Zyromska A, Małkowski B, Wiśniewski T, Majewska K, Reszke J, Makarewicz R. 15O-H2O PET/CT as a tool for the quantitative assessment of early post-radiotherapy changes of heart perfusion in breast carcinoma patients. Br J Radiol. 2018;91(1088):20170653.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Song J, Yan R, Wu Z, Li J, Yan M, Hao X, et al. 13N-ammonia PET/CT detection of myocardial perfusion abnormalities in beagle dogs after local heart irradiation. J Nucl Med. 2017;58(4):605–10.

    Article  CAS  PubMed  Google Scholar 

  62. Saito K, Takeda K, Imanaka-Yoshida K, Imai H, Sekine T, Kamikura Y. Assessment of fatty acid metabolism in taxan-induced myocardial damage with iodine-123 BMIPP SPECT: comparative study with myocardial perfusion, left ventricular function, and histopathological findings. Ann Nucl Med. 2003;17(6):481–8.

    Article  CAS  PubMed  Google Scholar 

  63. Saito K, Takeda K, Okamoto S, Okamoto R, Makino K, Tameda Y, et al. Detection of doxorubicin cardiotoxicity by using iodine-123 BMIPP early dynamic SPECT: quantitative evaluation of early abnormality of fatty acid metabolism with the Rutland method. J Nucl Cardiol. 2000;7(6):553–61.

    Article  CAS  PubMed  Google Scholar 

  64. Matsuo S, Nakae I, Tsutamoto T, Okamoto N, Horie M. A novel clinical indicator using Tc-99m sestamibi for evaluating cardiac mitochondrial function in patients with cardiomyopathies. J Nucl Cardiol. 2007;14(2):215–20.

    Article  PubMed  Google Scholar 

  65. Matsuo S, Nakajima K, Kinuya S. Evaluation of cardiac mitochondrial function by a nuclear imaging technique using technetium-99m-MIBI uptake kinetics. Asia Ocean J Nucl Med Biol. 2013;1(1):39–43.

    PubMed  PubMed Central  Google Scholar 

  66. Carboni GP. A novel clinical indicator using cardiac technetium-99m sestamibi kinetics for evaluating cardiotoxicity in cancer patients treated with multiagent chemotherapy. Am J Cardiovasc Dis. 2012;2(4):293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, de Kemp RA. PET metabolic biomarkers for Cancer. Biomark Cancer. 2016;8(Suppl 2):61–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Alvarez JA, Russell RR. Cardio-oncology: the nuclear option. Curr Cardiol Rep. 2017;19(4):31.

    Article  PubMed  Google Scholar 

  69. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med [Internet]. 2008;49(Suppl 2):43S–63S.

    Article  CAS  Google Scholar 

  70. Mahabadi AA, Rischpler C. Cardiovascular imaging in cardio-oncology. J Thorac Dis. AME Publishing Company. 2018;10:S4351–66.

    Google Scholar 

  71. Borde C. Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: evidence of early chemotherapeutic cardiotoxicity? World J Radiol. 2012;4(5):220.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: a translational 18F-FDG PET/CT observation. J Nucl Med. 2017;58(10):1638–45.

    Article  CAS  PubMed  Google Scholar 

  73. O’Farrell AC, Evans R, Silvola JMU, Miller IS, Conroy E, Hector S, et al. A novel positron emission tomography (PET) approach to monitor cardiac metabolic pathway remodeling in response to Sunitinib malate. PLoS One. 2017;1:12(1).

    Google Scholar 

  74. Sourdon J, Lager F, Viel T, Balvay D, Moorhouse R, Bennana E, et al. Cardiac metabolic deregulation induced by the tyrosine kinase receptor inhibitor Sunitinib is rescued by endothelin receptor antagonism. Theranostics. 2017;7(11):2757–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sarocchi M, Bauckneht M, Arboscello E, Capitanio S, Marini C, Morbelli S, et al. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med. 2018;16(1):295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim J, Cho S-G, Kang S-R, Yoo SW, Kwon SY, Min J-J, et al. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2019:1–10.

    Google Scholar 

  77. Bauckneht M, Pastorino F, Castellani P, Cossu V, Orengo AM, Piccioli P, et al. Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. J Nucl Cardiol. 2019:1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dompieri, L.T., Dourado, M.L.C., Brandão, S.C.S. (2021). Nuclear Medicine Tools for Cardiac Damage Diagnosis in Oncology. In: Mesquita, C.T., Rezende, M.F. (eds) Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-62195-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62195-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62194-0

  • Online ISBN: 978-3-030-62195-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics