Skip to main content

Finite Element Solutions for Magnetic Shielding Power Applications

  • Chapter
  • First Online:
Numerical Methods for Energy Applications

Part of the book series: Power Systems ((POWSYS))

  • 828 Accesses

Abstract

In this chapter are presented some aspects concerning the finite element analysis of magnetic shielding for power applications. The investigation describes the physical mechanisms of magnetic shielding the magnetic field in a cylindrical shield using magnetic scalar potential and magnetic vector potential. A variational and a Galerkin finite element formulation are described. The mitigation of an OHTL magnetic field inside a shielded building placed near it is evaluated in the case study of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

OHTL:

Overhead transmission lines

UGTC:

Underground transmission cables

MV/LV:

Medium voltage/low voltage

CAE:

Computer aided engineering

FEM:

Finite Element Method

SE:

Shielding effectiveness

MSP \(V_{m}\):

Magnetic scalar potential \(V_{m}\)

MVP A:

Magnetic potential vector A

δ:

Skin depth

\(\omega = {2}\pi {\text{f}}\) :

Angular frequency

\(\mu_{0}\) :

Vacuum magnetic absolute permeability

\(\mu_{r}\) :

Relative magnetic permeability

\(\sigma\) :

Electric conductivity

H:

Magnetic field strength

E:

Electric field strength

k:

Propagation constant

B:

Magnetic flux density

J:

Current density

SLF:

Super low frequency

PDE:

Partial Differential Equation

Ni:

Shape functions

References

  1. Bravo JC, del Pino LJ, Cruz P (2019) A survey on optimization techniques applied to magnetic field mitigation in power systems. Energies 12:1332. https://doi.org/10.3390/en12071332

    Article  Google Scholar 

  2. Celozzi S, Araneo R, Lovat G (2008) Electromagnetic shielding. Wiley, Inc. https://doi.org/10.1002/9780470268483

  3. Fireteanu V, Popa M, Tudorache T (2004) Modele Numerice in Studiulsi Conceptia Dispozitivelor Electrotehnice (publication in Romanian). MatrixRom, Bucharest Romania

    Google Scholar 

  4. Salinas E (2001). Mitigation of power-frequency magnetic fields: with applications to substations and other parts of the electric network. PhD thesis, Chalmers University of Technology Göteborg, Sweden, https://publications.lib.chalmers.se/records/fulltext/523/523.pdf. Accessed 10 Jan 2019

  5. Zhao Y, Sun Z, Pan D, Lin S, Jin Y, Li L (2019) A new approach to calculate the shielding factor of magnetic shields comprising nonlinear ferromagnetic materials under arbitrary disturbances. Energies 12:2048. https://doi.org/10.3390/en12112048

    Article  Google Scholar 

  6. Yang J, Zhang W, Zou L, Wang Y, Sun Y, Feng Y (2019) Research on distribution and shielding of spatial magnetic field of a DC air core smoothing reactor. Energies 12:937. https://doi.org/10.3390/en12050937

    Article  Google Scholar 

  7. Cazacu D, Enescu F, Castravete S (2013) Numerical problems in 3D FEM simulation of harmonic magnetic fields. In: 2013 international conference on electronics, computers and artificial intelligence, ECAI 2013, pp 1–4. https://doi.org/10.1109/ECAI.2013.6636193

  8. Cazacu D (2013) Numerical problems in 3D magnetostatic FEM analysis. In: 15th WSEAS international conference on automatic control, modelling and simulation ACMOS ’13. Brasov, Romania, pp 385–390

    Google Scholar 

  9. Cazacu D, Castravete S (2012) Efficiency evaluation via finite element method of 3D magnetostatic shields using different types of magnetic potentials, pp 25–30. https://doi.org/10.1109/SIITME.2012.6384340

  10. Cazacu D, Stoica C (2015) Teaching computational aspects on the efficiency of multi layer spherical magneto static shields. In: Proceedings of the 2014 6th international conference on electronics, computers and artificial intelligence, ECAI 2014, pp 59–64. https://doi.org/10.1109/ECAI.2014.7090199

  11. Cazacu D (2012) Factors that influence the magnetostatic shields effectiveness. Bull Electr Eng Faculty, Valahia Univ Tirgoviste 1:6–11

    Google Scholar 

  12. Cazacu D, Ionescu V, Ionita S, Virjoghe E (2016) On the multishell cylindrical magnetostatic shields: analytical and numerical approach, pp 1–4. https://doi.org/10.1109/ECAI.2016.7861092

  13. Cazacu D, Stanescu C (2008) Finite element models of a transmission line for a plane electromagnetic wave in a shielding material. In: The 1st WSEAS international conference on finite differences, finite elements, finite volumes, boundary elements. Malta, pp 117–121

    Google Scholar 

  14. Stanescu C, Cazacu D (2008). Experimental and numerical aspects concerning the electromagnetic shielding materials. In: Proceedings of the 4th international conference on technical and physical problems of power engineering. Pitesti, Romania, pp 150–156

    Google Scholar 

  15. Virjoghe EO, Băncuţă I, Husu AG, Cazacu D, Florescu V (2019) Measurement and numerical modelling of electric field in open type air substation. J Sci Arts 19(1):249–259

    Google Scholar 

  16. Ionescu V, Cazacu D (2016) Analysis of COMSOL multiphysics parallel performance on a multi-core system, pp 1–5. https://doi.org/10.1109/ICATE.2016.7754605

  17. Ionescu VM, Cazacu D (2015) Virtualization impact on comsol processor detection. Univ Pitesti Scienti Bull, Series Electron Comput Sci 15(2):25–32

    Google Scholar 

  18. Cazacu D, Jubleanu R, Bizon N, Monea C (2019) Comparative numerical analysis of the stored magnetic energy in cylindrical and toroidal superconducting magnetic coils. In: Proceedings of the 2019 11th international conference on electronics, computers and artificial intelligence (ECAI). Pitesti, Romania. https://doi.org/10.1109/ECAI46879.2019.9042162

  19. Êvo M, de Paula H, Lopes I, Mesquita R, Souza D (2017) Study of the influence of underground power line shielding techniques on its power capability. J Control Automat Electr Syst 28:1–11. https://doi.org/10.1007/s40313-017-0319-x

    Article  Google Scholar 

  20. Ates K, Carlak F, Ozen S (2016) Magnetic field exposures due to underground power cables: a simulation study. https://doi.org/10.11159/eee16.133

  21. Li J, Quan W, Han B, Liu F, Xing L, Liu G (2018) Multilayer cylindrical magnetic shield for SERF atomic co-magnetometer application. IEEE Sens J 1–1. https://doi.org/10.1109/JSEN.2018.2890083

  22. Sankaran K (2019) Recent trends in computational electromagnetics for defence applications. Defence Sci J 69:65–73. https://doi.org/10.14429/dsj.69.13275

  23. Mu L (2019) Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. J Comput Appl Mathemat 361. https://doi.org/10.1016/j.cam.2019.04.026

  24. Wang C, Wang J (2019) Primal-dual weak Galerkin finite element methods for elliptic Cauchy problems. Comput Mathemat Appl 79(3):746–763. https://doi.org/10.1016/j.camwa.2019.07.031

    Article  MathSciNet  MATH  Google Scholar 

  25. Hortopan G, Vlase O, Nitu S (1990) Ecranarea Electromagntica in Tethnica Curentilor Intensi (publication in Romanian). Ed Tehnica, Bucharest

    Google Scholar 

  26. Kou Y, Jin K, Zheng X (2011) Numerical simulation on the shielding efficiency of magnetic shielding enclosures in the ITER applications. Comput Mater Continua 22:129–146

    Google Scholar 

  27. Yashchuk V, Lee S, Paperno E (2013) Magnetic shielding. In: Budker D, Kimball DJ (eds) Optical magnetometry. Cambridge University Press, Cambridge, pp 225–248. https://doi.org/10.1017/CBO9780511846380.013

  28. Whelan B, Kolling S, Oborn BM, Keall P (2018) Passive magnetic shielding in MRI-Linac systems. Phys Med Biol 63(7):075008

    Article  Google Scholar 

  29. Hoburg JF (1995) Principles of quasistatic magnetic shielding with cylindrical and spherical shields. IEEE Trans Electromag Compat 37(4):574–579. https://doi.org/10.1109/15.477342

    Article  Google Scholar 

  30. Hortopan G (2005) Principii si Tehnici de Compatibilitate Electromagnetica (publication in Romanian). Editura Tehnica, Bucharest

    Google Scholar 

  31. Losito O, Dimiccoli V, Barletta D (2011) Low frequency shielding improvement by multilayer design. In: Proceedings of EMC Europe 2011 York—10th international symposium on electromagnetic compatibility, pp 640–643

    Google Scholar 

  32. Lipworth G, Ensworth J, Seetharam K, Lee J, Schmalenberg P, Nomura T, Reynolds M, Smith D, Urzhumov Y (2015) Quasi-static magnetic field shielding using longitudinal Mu-near-zero metamaterials. Scienti Rep 5:12764. https://doi.org/10.1038/srep12764

    Article  Google Scholar 

  33. Sora C (1982) Bazele Electrotehnicii (publication in Romanian). Editura Didacticasi Pedagogica, Bucharest

    Google Scholar 

  34. Kaiser KL (2006) Electromagnetic shielding. Taylor & Francis

    Google Scholar 

  35. Mocanu CI (1981) Teoria Campului Electromagnetic (publication in Romanian). Editura Didacticasi Pedagogica, Bucharest

    Google Scholar 

  36. Polyak D (2007) Advanced modelling in computational electromagnetic compatibility. Wiley

    Google Scholar 

  37. Mindru G, Radulescu M (1986) Analiza Numerica a Campului Electromagnetic (publication in Romanian). Dacia Publishing House, Bucharest

    Google Scholar 

  38. Jin JM (2010) Theory and computation of electromagnetic fields. Wiley

    Google Scholar 

  39. Humphries S Jr (1997) Finite element methods for electromagnetics. CRC Press

    Google Scholar 

  40. Binns KJ, Lawrenson PJ, Trowbridge CV (1992) The analytical and numerical solution of electric and magnetic fields. Wiley

    Google Scholar 

  41. Kuczmann M (2009) Potential formulations in magnetic applying the finite element method. https://maxwell.sze.hu/docs/C4.pdf. Accessed 22 Feb 2019

  42. El Dein A (2009) Magnetic-field calculation under EHV transmission lines for more realistic cases. IEEE Trans Power Delivery 24:2214–2222. https://doi.org/10.1109/TPWRD.2009.2028794

    Article  Google Scholar 

  43. Filippopoulos G, Tsanakas D (2005) Analytical calculation of the magnetic field produced by electric power lines. IEEE Trans Power Delivery 20:1474–1482. https://doi.org/10.1109/TPWRD.2004.839184

    Article  Google Scholar 

  44. Molnar-Matei F, Andea P, Pană A, Teslovan R (2012) Double circuit 110 kV overhead line magnetic field analysis, pp 780–783. https://doi.org/10.1109/MELCON.2012.6196546

  45. Andreuccetti D, Zoppetti N, Conti R, Fanelli N, Giorgi A, Rendina R (2003) Magnetic fields from overhead power lines: advanced prediction techniques for environmental impact assessment and support to design, vol 2, 7 pp. https://doi.org/10.1109/PTC.2003.1304684

  46. Lunca E, Istrate M, Salceanu A, Tibuliac S (2012) Computation of the magnetic field exposure from 110 kV overhead power lines. In: EPE 2012—proceedings of the 2012 international conference and exposition on electrical and power engineering, pp 628–631. https://doi.org/10.1109/ICEPE.2012.6463803

  47. Okrainskaya I, Sidorov AI, Gladyshev SP (2012) Electromagnetic environment under over head power transmission lines 110–500 kV, pp 796–801. https://doi.org/10.1109/SPEEDAM.2012.6264574

  48. Mazzanti G (2010) Evaluation of continuous exposure to magnetic field from AC overhead transmission lines via historical load databases: common procedures and innovative heuristic formulas. IEEE Trans Power Delivery 25:238–247. https://doi.org/10.1109/TPWRD.2009.2035390

    Article  Google Scholar 

  49. Munteanu C, Pop, LT, Tapa V, Hangea C, Gutiu T, Lup S (2012) Study of the magnetic field distribution inside very high voltage substations, pp 660–663. https://doi.org/10.1109/ICEPE.2012.6463571

  50. Aponte G, Cadavid H, Perez R, Escobar A, Mora A, Bolanos H (2003) Electric and magnetic fields measured in Colombian lines and substations, vol 2, pp 1195−1198. https://doi.org/10.1109/ICSMC2.2003.1429132

  51. Beiu C, Golovanov N, Cornel T, Buica G (2017) Low frequency electromagnetic shielding solutions. https://doi.org/10.1109/SIELMEN.2017.8123301

  52. Livesey K, Camley R, Celinski Z, Maat S (2017) Magnetic shielding of 3-phase current by a composite material at low frequencies. AIP Adv 7:056328. https://doi.org/10.1063/1.4978702

    Article  Google Scholar 

  53. Andrei H, Fluerașu C, Vîrjoghe EO, Fluerașu C, Enescu D, Popovici D, Husu AG, Andrei PC, Predușcă G, Diaconu E (2011) Numerical methods, modelling and simulation applied in electrical engineering. Ed. Electra, Bucharest

    Google Scholar 

  54. Tupsie S, Isaramongkolrak A, Pao-la-or P (2010) Analysis of electromagnetic field effects using FEM for transmission lines transposition. Int J Electr Comput Eng 5(4):713–717

    Google Scholar 

  55. Salari J, Mpalantinos A, Silva JI (2009) Comparative analysis of 2- and 3-D methods for computing electric and magnetic fields generated by overhead transmission lines. IEEE Trans Power Delivery 24:338–344

    Article  Google Scholar 

  56. Lin J, Saunders R, Schulmeister K, Söderberg P, Stuck BE, Swerdlow A, Taki M, Veyret B, Ziegelberger G, Repacholi M, Matthes R, Ahlbom A, Jokela K, Roy C (2010) ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz) Health Phys 99. https://doi.org/10.1097/HP.0b013e3181f06c86

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Cazacu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cazacu, D., Virjoghe, E.O., Ionescu, V.M., Castravete, S. (2021). Finite Element Solutions for Magnetic Shielding Power Applications. In: Mahdavi Tabatabaei, N., Bizon, N. (eds) Numerical Methods for Energy Applications. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-62191-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62191-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62190-2

  • Online ISBN: 978-3-030-62191-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics