Skip to main content

Neuroendocrinology of the Hypothalamus and Pituitary Axes

  • Chapter
  • First Online:
The Human Hypothalamus

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The hypothalamus and pituitary gland which are, respectively, the approximate sizes of an almond and a bean seed form an integral part of the interface between the endocrine system and the central nervous system. The hypothalamus in addition is central in coordinating various metabolic, autonomic, and behavioral responses to environmental stimuli. These effects are mediated to less degree by neuronal connections with the rest of the brain and more so via the synthesis and secretion of myriad neurohormones which include stimulatory (releasing) and inhibitory hormones. These hormones and the secondary humoral factors whose secretion they modulate have central roles in the homeostatic control of processes as diverse as hunger, appetite, energy balance, temperature control, sleep regulation, other circadian rhythms, reproductive function, and social behavioral activities including affection and aggression. This chapter highlights the neuroendocrine functional relationships of the hypothalamic and pituitary axes to the rest of human systemic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References/Bibliography

  1. Scharrer E, Scharrer B. Neurosecretion. Physiol Rev. 1945;25:171–81.

    Article  CAS  Google Scholar 

  2. Guillemin R. Peptides in the brain: the new endocrinology of the neuron. Science. 1978;202(4366):390–402. Epub 1978/10/27.

    Article  CAS  PubMed  Google Scholar 

  3. Schally AV. Aspects of hypothalamic regulation of the pituitary gland. Science. 1978;202(4363):18–28. Epub 1978/10/06.

    Article  CAS  PubMed  Google Scholar 

  4. Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci. 2007;27(50):13624–34. Epub 2007/12/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tobet SA. Genes controlling hypothalamic development and sexual differentiation. Eur J Neurosci. 2002;16(3):373–6. Epub 2002/08/24.

    Article  PubMed  Google Scholar 

  6. Markakis EA. Development of the neuroendocrine hypothalamus. Front Neuroendocrinol. 2002;23(3):257–91. Epub 2002/07/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McNay DE, Pelling M, Claxton S, Guillemot F, Ang SL. Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol Endocrinol. 2006;20(7):1623–32. Epub 2006/02/14.

    Article  CAS  PubMed  Google Scholar 

  8. Yu S, Francois M, Huesing C, Munzberg H. The hypothalamic preoptic area and body weight control. Neuroendocrinology. 2018;106(2):187–94. Epub 2017/08/05.

    Article  CAS  PubMed  Google Scholar 

  9. Cornejo MP, Hentges ST, Maliqueo M, Coirini H, Becu-Villalobos D, Elias CF. Neuroendocrine regulation of metabolism. J Neuroendocrinol. 2016;28(7). Epub 2016/04/27.

    Google Scholar 

  10. Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014;220(2):T25–46. Epub 2013/11/14.

    Article  CAS  PubMed  Google Scholar 

  11. van Dijk G, Evers SS, Guidotti S, Thornton SN, Scheurink AJ, Nyakas C. The lateral hypothalamus: a site for integration of nutrient and fluid balance. Behav Brain Res. 2011;221(2):481–7. Epub 2011/02/09.

    Article  PubMed  CAS  Google Scholar 

  12. Donato J Jr, Cravo RM, Frazao R, Elias CF. Hypothalamic sites of leptin action linking metabolism and reproduction. Neuroendocrinology. 2011;93(1):9–18. Epub 2010/11/26.

    Article  CAS  PubMed  Google Scholar 

  13. Plant TM. Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. J Neuroendocrinol. 2008;20(6):719–26. Epub 2008/07/08.

    Article  CAS  PubMed  Google Scholar 

  14. Harrold JA. Hypothalamic control of energy balance. Curr Drug Targets. 2004;5(3):207–19. Epub 2004/04/03.

    Article  CAS  PubMed  Google Scholar 

  15. Muller MB, Uhr M, Holsboer F, Keck ME. Hypothalamic-pituitary-adrenocortical system and mood disorders: highlights from mutant mice. Neuroendocrinology. 2004;79(1):1–12. Epub 2004/02/03.

    Article  PubMed  CAS  Google Scholar 

  16. Bernardis LL, Bellinger LL. The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev. 1993;17(2):141–93. Epub 1993/01/01.

    Article  CAS  PubMed  Google Scholar 

  17. Smith R, Thomson M. Neuroendocrinology of the hypothalamo-pituitary-adrenal axis in pregnancy and the puerperium. Baillieres Clin Endocrinol Metab. 1991;5(1):167–86. Epub 1991/03/01.

    Article  CAS  PubMed  Google Scholar 

  18. Veldhuis JD. The hypothalamic pulse generator: the reproductive core. Clin Obstet Gynecol. 1990;33(3):538–50. Epub 1990/09/01.

    Article  CAS  PubMed  Google Scholar 

  19. Reichlin S. Neuroendocrinology of the pituitary gland. Toxicol Pathol. 1989;17(2):250–5. Epub 1989/01/01.

    Article  CAS  PubMed  Google Scholar 

  20. Arimura A, Fishback JB. Somatostatin: regulation of secretion. Neuroendocrinology. 1981;33(4):246–56. Epub 1981/01/01.

    Article  CAS  PubMed  Google Scholar 

  21. Almeida OF, Hassan AH, Holsboer F. Intrahypothalamic neuroendocrine actions of corticotropin-releasing factor. Ciba Found Symp. 1993;172:151–69. Discussion 69–72. Epub 1993/01/01.

    CAS  PubMed  Google Scholar 

  22. Bonfiglio JJ, Inda C, Refojo D, Holsboer F, Arzt E, Silberstein S. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved. Neuroendocrinology. 2011;94(1):12–20. Epub 2011/05/18.

    Article  CAS  PubMed  Google Scholar 

  23. Born J, Fehm HL. Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Exp Clin Endocrinol Diab Off J German Society of Endocrinology [and] German Diabetes Association. 1998;106(3):153–63. Epub 1998/08/26.

    Article  CAS  Google Scholar 

  24. Buckingham JC. Stress and the hypothalamo-pituitary-immune axis. Int J Tissue React. 1998;20(1):23–34. Epub 1998/04/30.

    CAS  PubMed  Google Scholar 

  25. Balthazart J, Ball GF. Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol. 2007;28(4):161–78. Epub 2007/07/13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Constantin S. Physiology of the gonadotrophin-releasing hormone (GnRH) neurone: studies from embryonic GnRH neurones. J Neuroendocrinol. 2011;23(6):542–53. Epub 2011/03/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Genazzani AR, Petraglia F, Gamba O, Sgarbi L, Greco MM, Genazzani AD. Neuroendocrinology of the menstrual cycle. Ann N Y Acad Sci. 1997;816:143–50. Epub 1997/06/17.

    Article  CAS  PubMed  Google Scholar 

  28. Harrold JA. Leptin leads hypothalamic feeding circuits in a new direction. BioEssays. 2004;26(10):1043–5. Epub 2004/09/24.

    Article  CAS  PubMed  Google Scholar 

  29. Plant TM. Neuroendocrine control of the onset of puberty. Front Neuroendocrinol. 2015;38:73–88. Epub 2015/04/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belle MD. Circadian tick-talking across the neuroendocrine system and suprachiasmatic nuclei circuits: the enigmatic communication between the molecular and electrical membrane clocks. J Neuroendocrinol. 2015;27(7):567–76. Epub 2015/04/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brown CH, Bourque CW. Mechanisms of rhythmogenesis: insights from hypothalamic vasopressin neurons. Trends Neurosci. 2006;29(2):108–15. Epub 2005/12/07.

    Article  CAS  PubMed  Google Scholar 

  32. Rubin RT, Poland RE, Rubin LE, Gouin PR. The neuroendocrinology of human sleep. Life Sci. 1974;14(6):1041–52. Epub 1974/03/16.

    Article  CAS  PubMed  Google Scholar 

  33. Hofman MA, Swaab DF. The sexually dimorphic nucleus of the preoptic area in the human brain: a comparative morphometric study. J Anat. 1989;164:55–72. Epub 1989/06/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinnies KM, Bonthuis PJ, Harris EP, Shetty SR, Rissman EF. Neural growth hormone: regional regulation by estradiol and/or sex chromosome complement in male and female mice. Biol Sex Differ. 2015;6:8. Epub 2015/05/20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Castaneyra-Ruiz L, Gonzalez-Marrero I, Castaneyra-Ruiz A, Gonzalez-Toledo JM, Castaneyra-Ruiz M, de Paz-Carmona H, et al. Luteinizing hormone-releasing hormone distribution in the anterior hypothalamus of the female rats. ISRN Anat. 2013;2013:870721. Epub 2013/01/01.

    PubMed  PubMed Central  Google Scholar 

  36. Isgor C, Cecchi M, Kabbaj M, Akil H, Watson SJ. Estrogen receptor beta in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone. Neuroscience. 2003;121(4):837–45. Epub 2003/10/29.

    Article  CAS  PubMed  Google Scholar 

  37. McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: the not so inconvenient truth. J Neurosci. 2012;32(7):2241–7. Epub 2012/03/08.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oldfield BJ, McKinley MJ. Circumventricular organs. In: Paxinos G, editor. The rat nervous system. Cambridge, Massachusetts: Academic Press, 1995. p. 391–403.

    Google Scholar 

  39. Weindl A. Neuroendocrine aspects of the circumventricular organs. In: Ganong W, Martini L, editors. Frontiers in neuroendocrinology. Oxford University Press, Oxford, England, UK; 1973. p. 3–32.

    Google Scholar 

  40. Johnson AK, Gross PM. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 1993;7(8):678–86. Epub 1993/05/01.

    Article  CAS  PubMed  Google Scholar 

  41. Fekete C, Freitas BC, Zeold A, Wittmann G, Kadar A, Liposits Z, et al. Expression patterns of WSB-1 and USP-33 underlie cell-specific posttranslational control of type 2 deiodinase in the rat brain. Endocrinology. 2007;148(10):4865–74. Epub 2007/07/14.

    Article  CAS  PubMed  Google Scholar 

  42. Kallo I, Mohacsik P, Vida B, Zeold A, Bardoczi Z, Zavacki AM, et al. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One. 2012;7(6):e37860. Epub 2012/06/22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, et al. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology. 1997;138(8):3359–68. Epub 1997/08/01.

    Article  CAS  PubMed  Google Scholar 

  44. Sanders NM, Dunn-Meynell AA, Levin BE. Third ventricular alloxan reversibly impairs glucose counterregulatory responses. Diabetes. 2004;53(5):1230–6. Epub 2004/04/28.

    Article  CAS  PubMed  Google Scholar 

  45. Weindl A, Sofroniew MV. Relation of neuropeptides to mammalian circumventricular organs. In: Martin JB, Reichlin S, Bick KL, editors. Neurosecretion and brain peptides. New York, USA: Raven Press, 1981. p. 303–320.

    Google Scholar 

  46. McKinley MJ, Burns P, Colvill LM, Oldfield BJ, Wade JD, Weisinger RS, et al. Distribution of Fos immunoreactivity in the lamina terminalis and hypothalamus induced by centrally administered relaxin in conscious rats. J Neuroendocrinol. 1997;9(6):431–7. Epub 1997/06/01.

    Article  CAS  PubMed  Google Scholar 

  47. Oldfield BJ, Badoer E, Hards DK, McKinley MJ. Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience. 1994;60(1):255–62. Epub 1994/05/01.

    Article  CAS  PubMed  Google Scholar 

  48. Hoffman GE, Gibbs FP. LHRH pathways in rat brain: ‘deafferentation’ spares a sub-chiasmatic LHRH projection to the median eminence. Neuroscience. 1982;7(8):1979–93. Epub 1982/01/01.

    Article  CAS  PubMed  Google Scholar 

  49. Dellmann HD. Fine structural organization of the subfornical organ. A concise review. Brain Res Bull. 1985;15(1):71–8. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  50. Dellmann HD, Simpson JB. The subfornical organ. Int Rev Cytol. 1979;58:333–421. Epub 1979/01/01.

    Article  CAS  PubMed  Google Scholar 

  51. Gross PM. Circumventricular organ capillaries. Prog Brain Res. 1992;91:219–33. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  52. Swanon LW, Mogenson GJ. Neural mechanisms for functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res Brain Res Rev. 1981;3:2–34.

    Google Scholar 

  53. Bourque CW, Oliet SH, Richard D. Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol. 1994;15(3):231–74. Epub 1994/09/01.

    Article  CAS  PubMed  Google Scholar 

  54. Ferguson AV. Neurophysiological analysis of mechanisms for subfornical organ and area postrema involvement in autonomic control. Prog Brain Res. 1992;91:413–21. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  55. Toni R, Mosca S, Ruggeri F, Valmori A, Orlandi G, Toni G, et al. Effect of hypothyroidism on vasoactive intestinal polypeptide-immunoreactive neurons in forebrain-neurohypophysial nuclei of the rat brain. Brain Res. 1995;682(1–2):101–15. Epub 1995/06/05.

    Article  CAS  PubMed  Google Scholar 

  56. Kai A, Ono K, Kawano H, Honda E, Nakanishi O, Inenaga K. Galanin inhibits neural activity in the subfornical organ in rat slice preparation. Neuroscience. 2006;143(3):769–77. Epub 2006/10/10.

    Article  CAS  PubMed  Google Scholar 

  57. Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, et al. Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest. 2007;117(4):1088–95. Epub 2007/04/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gross PM. The subfornical organ as a model of neurohumoral integration. Brain Res Bull. 1985;15(1):65–70. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  59. Hajdu I, Szentirmai E, Obal F Jr, Krueger JM. Different brain structures mediate drinking and sleep suppression elicited by the somatostatin analog, octreotide, in rats. Brain Res. 2003;994(1):115–23. Epub 2003/12/04.

    Article  CAS  PubMed  Google Scholar 

  60. Kadekaro M, Gross PM. Elevated glucose utilization in the subfornical organ during dehydration. Brain Res Bull. 1985;15(1):99–104. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  61. Price CJ, Hoyda TD, Samson WK, Ferguson AV. Nesfatin-1 influences the excitability of paraventricular nucleus neurones. J Neuroendocrinol. 2008;20(2):245–50. Epub 2007/12/20.

    Article  CAS  PubMed  Google Scholar 

  62. Price TO, Samson WK, Niehoff ML, Banks WA. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides. 2007;28(12):2372–81. Epub 2007/11/17.

    Article  CAS  PubMed  Google Scholar 

  63. Samson WK, White MM, Price C, Ferguson AV. Obestatin acts in brain to inhibit thirst. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R637–43. Epub 2006/08/26.

    Article  CAS  PubMed  Google Scholar 

  64. Young CN, Morgan DA, Butler SD, Mark AL, Davisson RL. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension. 2013;61(3):737–44. Epub 2013/01/30.

    Article  CAS  PubMed  Google Scholar 

  65. Lee K, Tan J, Morris MB, Rizzoti K, Hughes J, Cheah PS, et al. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice. PLoS One. 2012;7(1):e29041. Epub 2012/02/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saha S, Subhedar N. Calcitonin-like immunoreactivity in the subcommissural organ-Reissner’s fiber complex of some freshwater and marine teleosts. J Chem Neuroanat. 2011;41(2):122–8. Epub 2010/12/28.

    Article  CAS  PubMed  Google Scholar 

  67. Elgot A, Ahboucha S, Bouyatas MM, Fevre-Montange M, Gamrani H. Water deprivation affects serotoninergic system and glycoprotein secretion in the sub-commissural organ of a desert rodent Meriones shawi. Neurosci Lett. 2009;466(1):6–10. Epub 2009/09/01.

    Article  CAS  PubMed  Google Scholar 

  68. Borison HL. Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog Neurobiol. 1989;32(5):351–90. Epub 1989/01/01.

    Article  CAS  PubMed  Google Scholar 

  69. Brizzee KR, Klara PM. The structure of the mammalian area postrema. Fed Proc. 1984;43(15):2944–8. Epub 1984/12/01.

    CAS  PubMed  Google Scholar 

  70. Lavezzi AM, Mecchia D, Matturri L. Neuropathology of the area postrema in sudden intrauterine and infant death syndromes related to tobacco smoke exposure. Auton Neurosci. 2012;166(1–2):29–34. Epub 2011/10/11.

    Article  CAS  PubMed  Google Scholar 

  71. Gross PM, Wainman DS, Shaver SW, Wall KM, Ferguson AV. Metabolic activation of efferent pathways from the rat area postrema. Am J Phys. 1990;258(3 Pt 2):R788–97. Epub 1990/03/01.

    CAS  Google Scholar 

  72. Shaver SW, Kadekaro M, Gross PM. High metabolic activity in the dorsal vagal complex of Brattleboro rats. Brain Res. 1989;505(2):316–20. Epub 1989/12/29.

    Article  CAS  PubMed  Google Scholar 

  73. Shaver SW, Kadekaro M, Gross PM. Focal metabolic effects of angiotensin and captopril on subregions of the rat subfornical organ. Peptides. 1990;11(3):557–63. Epub 1990/05/01.

    Article  CAS  PubMed  Google Scholar 

  74. Shaver SW, Kadekaro M, Gross PM. Differential rates of glucose metabolism across subregions of the subfornical organ in Brattleboro rats. Regul Pept. 1990;27(1):37–49. Epub 1990/01/01.

    Article  CAS  PubMed  Google Scholar 

  75. Feldberg W, Pyke D, Stubbs WA. Hyperglycaemia: imitating Claude Bernard’s piqure with drugs. J Auton Nerv Syst. 1985;14(3):213–28. Epub 1985/11/01.

    Article  CAS  PubMed  Google Scholar 

  76. Li MC. Effect of piqure diabetique upon the blood sugar content of rabbits, adrenalectomized or splanchnicotomized. Tohoku J Exp Med. 1952;56(4):310. Epub 1952/10/01.

    Article  CAS  PubMed  Google Scholar 

  77. Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev. 2005;9(1):25–39. Epub 2005/01/15

    Article  PubMed  Google Scholar 

  78. Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25(3–4):177–95. Epub 2004/12/14.

    Article  CAS  PubMed  Google Scholar 

  79. Chen CY, Chen FH, Lee CC, Lee KW, Hsiao HS. Sonographic characteristics of the cavum velum interpositum. AJNR Am J Neuroradiol. 1998;19(9):1631–5. Epub 1998/11/05.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Arendt J. Melatonin and the mammalian pineal gland. 1st ed. London UK:Chapman and Hall, 1995.

    Google Scholar 

  81. Pritchard TC, Alloway KD. Medical neuroscience. Raleigh, NC; Hayes Barton Press, 1999. p. 76–77.

    Google Scholar 

  82. Moller M, Baeres FM. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002;309(1):139–50. Epub 2002/07/12.

    Article  CAS  PubMed  Google Scholar 

  83. Kleinschmidt-DeMasters BK, Prayson RA. An algorithmic approach to the brain biopsy – part I. Arch Pathol Lab Med. 2006;130(11):1630–8. Epub 2006/11/02.

    Article  CAS  PubMed  Google Scholar 

  84. Prayson RA, Kleinschmidt-DeMasters BK. An algorithmic approach to the brain biopsy--part II. Arch Pathol Lab Med. 2006;130(11):1639–48. Epub 2006/11/02.

    Article  PubMed  Google Scholar 

  85. Schmidt F, Penka B, Trauner M, Reinsperger L, Ranner G, Ebner F, et al. Lack of pineal growth during childhood. J Clin Endocrinol Metab. 1995;80(4):1221–5. Epub 1995/04/01.

    CAS  PubMed  Google Scholar 

  86. Sumida M, Barkovich AJ, Newton TH. Development of the pineal gland: measurement with MR. AJNR Am J Neuroradiol. 1996;17(2):233–6. Epub 1996/02/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tapp E, Huxley M. The weight and degree of calcification of the pineal gland. J Pathol. 1971;105(1):31–9. Epub 1971/09/01.

    Article  CAS  PubMed  Google Scholar 

  88. Tapp E, Huxley M. The histological appearance of the human pineal gland from puberty to old age. J Pathol. 1972;108(2):137–44. Epub 1972/10/01.

    Article  CAS  PubMed  Google Scholar 

  89. Lerner AB, Case JD, Takahashi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem. 1960;235:1992–7. Epub 1960/07/01.

    Article  CAS  PubMed  Google Scholar 

  90. Axelrod J. The pineal gland. Endeavour. 1970;29(108):144–8. Epub 1970/09/01.

    CAS  PubMed  Google Scholar 

  91. Lowrey PL, Takahashi JS. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet. 2000;34:533–62. Epub 2000/11/28.

    Article  CAS  PubMed  Google Scholar 

  92. Airaksinen MM, Sainio EL, Leppaluoto J, Kari I. 6-methoxy-tetrahydro-beta-carboline (pinoline): effects on plasma renin activity and aldosterone, TSH, LH and beta-endorphin levels in rats. Acta Endocrinol. 1984;107(4):525–30. Epub 1984/12/01.

    CAS  Google Scholar 

  93. Aranda M, Albendea CD, Lostale F, Lopez-Pingarron L, Fuentes-Broto L, Martinez-Ballarin E, et al. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and pinoline. J Pineal Res. 2010;49(1):78–85. Epub 2010/06/08.

    CAS  PubMed  Google Scholar 

  94. Fuentes-Broto L, Miana-Mena FJ, Piedrafita E, Berzosa C, Martinez-Ballarin E, Garcia-Gil FA, et al. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver. J Cell Biochem. 2010;110(5):1219–25. Epub 2010/06/22.

    Article  CAS  PubMed  Google Scholar 

  95. Langer SZ, Lee CR, Segonzac A, Tateishi T, Esnaud H, Schoemaker H, et al. Possible endocrine role of the pineal gland for 6-methoxytetrahydro-beta-carboline, a putative endogenous neuromodulator of the [3H]imipramine recognition site. Eur J Pharmacol. 1984;102(2):379–80. Epub 1984/07/13.

    Article  CAS  PubMed  Google Scholar 

  96. Langer SZ, Raisman R, Tahraoui L, Scatton B, Niddam R, Lee CR, et al. Substituted tetrahydro-beta-carbolines are possible candidates as endogenous ligand of the [3H]imipramine recognition site. Eur J Pharmacol. 1984;98(1):153–4. Epub 1984/02/10.

    Article  CAS  PubMed  Google Scholar 

  97. Millan-Plano S, Piedrafita E, Miana-Mena FJ, Fuentes-Broto L, Martinez-Ballarin E, Lopez-Pingarron L, et al. Melatonin and structurally-related compounds protect synaptosomal membranes from free radical damage. Int J Mol Sci. 2010;11(1):312–28. Epub 2010/02/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pahkla R, Zilmer M, Kullisaar T, Rago L. Comparison of the antioxidant activity of melatonin and pinoline in vitro. J Pineal Res. 1998;24(2):96–101. Epub 1998/03/24.

    Article  CAS  PubMed  Google Scholar 

  99. Pless G, Frederiksen TJ, Garcia JJ, Reiter RJ. Pharmacological aspects of N-acetyl-5-methoxytryptamine (melatonin) and 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (pinoline) as antioxidants: reduction of oxidative damage in brain region homogenates. J Pineal Res. 1999;26(4):236–46. Epub 1999/05/26.

    Article  CAS  PubMed  Google Scholar 

  100. Siu AW, Reiter RJ, To CH. Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates. J Pineal Res. 1999;27(2):122–8. Epub 1999/09/25.

    Article  CAS  PubMed  Google Scholar 

  101. Herraiz T, Galisteo J. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic Res. 2004;38(3):323–31. Epub 2004/05/08.

    Article  CAS  PubMed  Google Scholar 

  102. Motta M, Fraschini F, Martini L. Endocrine effects of pineal gland and of melatonin. Proc Soc Exp Biol Med. 1967;126(2):431–5. Epub 1967/11/01.

    Article  CAS  PubMed  Google Scholar 

  103. Naidoo V, Naidoo S, Mahabeer R, Raidoo DM. Cellular distribution of the endothelin system in the human brain. J Chem Neuroanat. 2004;27(2):87–98. Epub 2004/05/04.

    Article  CAS  PubMed  Google Scholar 

  104. Sharan K, Lewis K, Furukawa T, Yadav VK. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res. 2017;63(2). Epub 2017/05/18.

    Google Scholar 

  105. Chew BH, Weaver DF, Gross PM. Dose-related potent brain stimulation by the neuropeptide endothelin-1 after intraventricular administration in conscious rats. Pharmacol Biochem Behav. 1995;51(1):37–47. Epub 1995/05/01.

    Article  CAS  PubMed  Google Scholar 

  106. Jacobs RA, Satta MA, Dahia PL, Chew SL, Grossman AB. Induction of nitric oxide synthase and interleukin-1beta, but not heme oxygenase, messenger RNA in rat brain following peripheral administration of endotoxin. Brain Res Mol Brain Res. 1997;49(1–2):238–46. Epub 1997/12/05.

    Article  CAS  PubMed  Google Scholar 

  107. Jacobs RA, Schaad NC, Vanecek J, Leaver S, Aubry JM, Korf HW, et al. Pineal nitric oxide synthase, but not heme oxygenase, mRNA is suppressed by continuous exposure to light. Brain Res Mol Brain Res. 1999;70(2):264–72. Epub 1999/07/17.

    Article  CAS  PubMed  Google Scholar 

  108. Gross PM, Wainman DS, Chew BH, Espinosa FJ, Weaver DF. Calcium-mediated metabolic stimulation of neuroendocrine structures by intraventricular endothelin-1 in conscious rats. Brain Res. 1993;606(1):135–42. Epub 1993/03/19.

    Article  CAS  PubMed  Google Scholar 

  109. Del Brutto OH, Mera RM, Lama J, Zambrano M, Castillo PR. Pineal gland calcification is not associated with sleep-related symptoms. A population-based study in community-dwelling elders living in Atahualpa (rural coastal Ecuador). Sleep Med. 2014;15(11):1426–7. Epub 2014/10/04.

    Article  PubMed  Google Scholar 

  110. Doyle AJ, Anderson GD. Physiologic calcification of the pineal gland in children on computed tomography: prevalence, observer reliability and association with choroid plexus calcification. Acad Radiol. 2006;13(7):822–6. Epub 2006/06/17.

    Article  PubMed  Google Scholar 

  111. Tan DX, Xu B, Zhou X, Reiter RJ. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2). Epub 2018/02/01.

    Google Scholar 

  112. Vigh B, Szel A, Debreceni K, Fejer Z, Manzano e Silva MJ, Vigh-Teichmann I. Comparative histology of pineal calcification. Histol Histopathol. 1998;13(3):851–70. Epub 1998/08/05.

    CAS  PubMed  Google Scholar 

  113. Whitehead MT, Oh C, Raju A, Choudhri AF. Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. AJNR Am J Neuroradiol. 2015;36(3):575–80. Epub 2014/10/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Flament-Durand J. The hypothalamus: anatomy and functions. Acta Psychiatr Belg. 1980;80(4):364–75. Epub 1980/07/01.

    CAS  PubMed  Google Scholar 

  115. Hrabovszky E. Neuroanatomy of the human hypothalamic kisspeptin system. Neuroendocrinology. 2014;99(1):33–48. Epub 2014/01/10.

    Article  CAS  PubMed  Google Scholar 

  116. Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol. 2013;243:4–20. Epub 2012/07/07.

    Article  PubMed  Google Scholar 

  117. Patel CR, Fernandez-Miranda JC, Wang WH, Wang EW. Skull base anatomy. Otolaryngol Clin N Am. 2016;49(1):9–20. Epub 2015/11/29.

    Article  Google Scholar 

  118. Swaab DF, Hofman MA, Lucassen PJ, Purba JS, Raadsheer FC, Van de Nes JA. Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol. 1993;187(4):317–30. Epub 1993/04/01.

    Article  CAS  Google Scholar 

  119. Watts AG. 60 years of neuroendocrinology: the structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geoffrey Harris. J Endocrinol. 2015;226(2):T25–39. Epub 2015/05/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Matsumoto H, Noguchi J, Takatsu Y, Horikoshi Y, Kumano S, Ohtaki T, et al. Stimulation effect of galanin-like peptide (GALP) on luteinizing hormone-releasing hormone-mediated luteinizing hormone (LH) secretion in male rats. Endocrinology. 2001;142(8):3693–6. Epub 2001/07/19.

    Article  CAS  PubMed  Google Scholar 

  121. Merchenthaler I, Lennard DE. The hypophysiotropic neurotensin-immunoreactive neuronal system of the rat brain. Endocrinology. 1991;129(6):2875–80. Epub 1991/12/01.

    Article  CAS  PubMed  Google Scholar 

  122. Merchenthaler I, Lopez FJ, Lennard DE, Negro-Vilar A. Sexual differences in the distribution of neurons coexpressing galanin and luteinizing hormone-releasing hormone in the rat brain. Endocrinology. 1991;129(4):1977–86. Epub 1991/10/01.

    Article  CAS  PubMed  Google Scholar 

  123. Niimi M, Takahara J, Sato M, Kawanishi K. Sites of origin of growth hormone-releasing factor-containing neurons projecting to the stalk-median eminence of the rat. Peptides. 1989;10(3):605–8. Epub 1989/05/01.

    Article  CAS  PubMed  Google Scholar 

  124. Niimi M, Takahara J, Sato M, Kawanishi K. Neurotensin and growth hormone-releasing factor-containing neurons projecting to the median eminence of the rat: a combined retrograde tracing and immunohistochemical study. Neurosci Lett. 1991;133(2):183–6. Epub 1991/12/09.

    Article  CAS  PubMed  Google Scholar 

  125. Niimi M, Takahara J, Sato M, Kawanishi K. Identification of dopamine and growth hormone-releasing factor-containing neurons projecting to the median eminence of the rat by combined retrograde tracing and immunohistochemistry. Neuroendocrinology. 1992;55(1):92–6. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  126. Takatsu Y, Matsumoto H, Ohtaki T, Kumano S, Kitada C, Onda H, et al. Distribution of galanin-like peptide in the rat brain. Endocrinology. 2001;142(4):1626–34. Epub 2001/03/17.

    Article  CAS  PubMed  Google Scholar 

  127. Dalcik H, Phelps CJ. Median eminence-afferent vasoactive intestinal peptide (VIP) neurons in the hypothalamus: localization by simultaneous tract tracing and immunocytochemistry. Peptides. 1993;14(5):1059–66. Epub 1993/09/01.

    Article  CAS  PubMed  Google Scholar 

  128. Ishikawa K, Taniguchi Y, Kurosumi K, Suzuki M, Shinoda M. Immunohistochemical identification of somatostatin-containing neurons projecting to the median eminence of the rat. Endocrinology. 1987;121(1):94–7. Epub 1987/07/01.

    Article  CAS  PubMed  Google Scholar 

  129. Kawano H, Daikoku S. Somatostatin-containing neuron systems in the rat hypothalamus: retrograde tracing and immunohistochemical studies. J Comp Neurol. 1988;271(2):293–9. Epub 1988/05/08.

    Article  CAS  PubMed  Google Scholar 

  130. Kawano H, Daikoku S, Shibasaki T. CRF-containing neuron systems in the rat hypothalamus: retrograde tracing and immunohistochemical studies. J Comp Neurol. 1988;272(2):260–8. Epub 1988/06/08.

    Article  CAS  PubMed  Google Scholar 

  131. Kawano H, Tsuruo Y, Bando H, Daikoku S. Hypophysiotrophic TRH-producing neurons identified by combining immunohistochemistry for pro-TRH and retrograde tracing. J Comp Neurol. 1991;307(4):531–8. Epub 1991/05/22.

    Article  CAS  PubMed  Google Scholar 

  132. Merchenthaler I. Enkephalin-immunoreactive neurons in the parvicellular subdivisions of the paraventricular nucleus project to the external zone of the median eminence. J Comp Neurol. 1992;326(1):112–20. Epub 1992/12/01.

    Article  CAS  PubMed  Google Scholar 

  133. Merchenthaler I, Meeker M, Petrusz P, Kizer JS. Identification and immunocytochemical localization of a new thyrotropin-releasing hormone precursor in rat brain. Endocrinology. 1989;124(4):1888–97. Epub 1989/04/01.

    Article  CAS  PubMed  Google Scholar 

  134. Merchenthaler I, Setalo G, Csontos C, Petrusz P, Flerko B, Negro-Vilar A. Combined retrograde tracing and immunocytochemical identification of luteinizing hormone-releasing hormone- and somatostatin-containing neurons projecting to the median eminence of the rat. Endocrinology. 1989;125(6):2812–21. Epub 1989/12/01.

    Article  CAS  PubMed  Google Scholar 

  135. Niimi M, Takahara J, Hashimoto K, Kawanishi K. Immunohistochemical identification of corticotropin releasing factor-containing neurons projecting to the stalk-median eminence of the rat. Peptides. 1988;9(3):589–93. Epub 1988/05/01.

    Article  CAS  PubMed  Google Scholar 

  136. De Mey J, Dierickx K, Vandesande F. Identification of neurophysin producing cells. III. Immunohistochemical demonstration of neurophysin I-producing neurons in the bovine infundibular nucleus. Cell Tissue Res. 1975;161(2):219–24. Epub 1975/08/18.

    Article  PubMed  Google Scholar 

  137. De Mey J, Dierickx K, Vandesande F. Immunohistochemical demonstration of neurophysin I - and neurophysin II - containing nerve fibres in the external region of the bovine median eminence. Cell Tissue Res. 1975;157(4):517–9. Epub 1975/01/01.

    Article  PubMed  Google Scholar 

  138. Vandesande F, Dierickx K. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res. 1975;164(2):153–62. Epub 1975/12/02.

    Article  CAS  PubMed  Google Scholar 

  139. Vandesande F, Dierickx K, De Mey J. Identification of separate vasopressin-neurophysin II and oxytocin-neurophysin I containing nerve fibres in the external region of the bovine median eminence. Cell Tissue Res. 1975;158(4):509–16. Epub 1975/05/20.

    Article  CAS  PubMed  Google Scholar 

  140. Vandesande F, Dierickx K, DeMey J. Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res. 1975;156(3):377–80. Epub 1975/01/01.

    Article  CAS  PubMed  Google Scholar 

  141. Vandesande F, Dierickx K, DeMey J. Identification of the vasopressin-neurophysin II and the oxytocin-neurophysin I producing neurons in the bovine hypothalamus. Cell Tissue Res. 1975;156(2):189–200. Epub 1975/01/01.

    Article  CAS  PubMed  Google Scholar 

  142. Plotsky PM, Bruhn TO, Otto S. Central modulation of immunoreactive arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor. Endocrinology. 1985;116(4):1669–71. Epub 1985/04/01.

    Article  CAS  PubMed  Google Scholar 

  143. Plotsky PM, Bruhn TO, Vale W. Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin-induced hypoglycemia. Endocrinology. 1985;117(1):323–9. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  144. Plotsky PM, Bruhn TO, Vale W. Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology. 1985;116(2):633–9. Epub 1985/02/01.

    Article  CAS  PubMed  Google Scholar 

  145. Raff H. Interactions between neurohypophysial hormones and the ACTH-adrenocortical axis. Ann N Y Acad Sci. 1993;689:411–25. Epub 1993/07/22.

    Article  CAS  PubMed  Google Scholar 

  146. Chowdrey HS, Lightman SL. Role of central amino acids and peptide-mediated pathways in neurohypophysial hormone release. Ann N Y Acad Sci. 1993;689:183–93. Epub 1993/07/22.

    Article  CAS  PubMed  Google Scholar 

  147. Larsen PJ, Mikkelsen JD, Chowdrey HS, Jessop DS, Lightman SL. Osmotic regulation of neuropeptide Y synthesis in magnocellular neurons of the hypothalamo-neurohypophysial system. Ann N Y Acad Sci. 1993;689:619–22. Epub 1993/07/22.

    Article  CAS  PubMed  Google Scholar 

  148. Mikkelsen JD, Schmidt P, Sheikh SP, Larsen PJ. Non-vasopressinergic, non-oxytocinergic neuropeptides in the rat hypothalamo-neurohypophyseal tract: experimental immunohistochemical studies. Prog Brain Res. 1992;91:367–71. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  149. Morris JF, Pow DV. New anatomical insights into the inputs and outputs from hypothalamic magnocellular neurons. Annals of the New York Academy of Sciences. 1993;689:16–33. Epub 1993/07/22.

    Article  CAS  PubMed  Google Scholar 

  150. Nakamura S, Naruse M, Naruse K, Shioda S, Nakai Y, Uemura H. Colocalization of immunoreactive endothelin-1 and neurohypophysial hormones in the axons of the neural lobe of the rat pituitary. Endocrinology. 1993;132(2):530–3. Epub 1993/02/01.

    Article  CAS  PubMed  Google Scholar 

  151. Stopa EG, LeBlanc VK, Hill DH, Anthony EL. A general overview of the anatomy of the neurohypophysis. Ann N Y Acad Sci. 1993;689:6–15. Epub 1993/07/22.

    Article  CAS  PubMed  Google Scholar 

  152. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. Epub 2012/08/17.

    Article  CAS  Google Scholar 

  153. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63. Epub 1985/02/04.

    Article  CAS  PubMed  Google Scholar 

  154. Tannenbaum GS, Martin JB. Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology. 1976;98(3):562–70. Epub 1976/03/01.

    Article  CAS  PubMed  Google Scholar 

  155. Tannenbaum GS, Martin JB, Colle E. Ultradian growth hormone rhythm in the rat: effects of feeding, hyperglycemia, and insulin-induced hypoglycemia. Endocrinology. 1976;99(3):720–7. Epub 1976/09/01.

    Article  CAS  PubMed  Google Scholar 

  156. Smith RG, Van der Ploeg LH, Howard AD, Feighner SD, Cheng K, Hickey GJ, et al. Peptidomimetic regulation of growth hormone secretion. Endocr Rev. 1997;18(5):621–45. Epub 1997/10/23 22:24.

    Article  CAS  PubMed  Google Scholar 

  157. Grouselle D, Chaillou E, Caraty A, Bluet-Pajot MT, Zizzari P, Tillet Y, et al. Pulsatile cerebrospinal fluid and plasma ghrelin in relation to growth hormone secretion and food intake in the sheep. J Neuroendocrinol. 2008;20(10):1138–46. Epub 2008/08/05.

    Article  CAS  PubMed  Google Scholar 

  158. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60. Epub 1999/12/22.

    Article  CAS  PubMed  Google Scholar 

  159. Muccioli G, Tschop M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol. 2002;440(2–3):235–54. Epub 2002/05/15.

    Article  CAS  PubMed  Google Scholar 

  160. Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab. 2015;4(6):437–60. Epub 2015/06/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tschop M, Flora DB, Mayer JP, Heiman ML. Hypophysectomy prevents ghrelin-induced adiposity and increases gastric ghrelin secretion in rats. Obes Res. 2002;10(10):991–9. Epub 2002/10/12.

    Article  PubMed  Google Scholar 

  162. Ukkola O, Ravussin E, Jacobson P, Perusse L, Rankinen T, Tschop M, et al. Role of ghrelin polymorphisms in obesity based on three different studies. Obes Res. 2002;10(8):782–91. Epub 2002/08/16.

    Article  CAS  PubMed  Google Scholar 

  163. Plotsky PM, Kjaer A, Sutton SW, Sawchenko PE, Vale W. Central activin administration modulates corticotropin-releasing hormone and adrenocorticotropin secretion. Endocrinology. 1991;128(5):2520–5. Epub 1991/05/01.

    Article  CAS  PubMed  Google Scholar 

  164. Sarkar S, Fekete C, Legradi G, Lechan RM. Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res. 2003;985(2):163–8. Epub 2003/09/12.

    Article  CAS  PubMed  Google Scholar 

  165. Sawchenko PE, Swanson LW. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science. 1981;214(4521):685–7. Epub 1981/11/06.

    Article  CAS  PubMed  Google Scholar 

  166. Sawchenko PE, Swanson LW, Grzanna R, Howe PR, Bloom SR, Polak JM. Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol. 1985;241(2):138–53. Epub 1985/11/08.

    Article  CAS  PubMed  Google Scholar 

  167. Sawchenko PE, Swanson LW, Rivier J, Vale WW. The distribution of growth-hormone-releasing factor (GRF) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J Comp Neurol. 1985;237(1):100–15. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  168. Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev. 1996;17(1):64–102. Epub 1996/02/01.

    Article  CAS  PubMed  Google Scholar 

  169. Sawchenko PE, Li HY, Ericsson A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res. 2000;122:61–78. Epub 2000/03/29.

    Article  CAS  PubMed  Google Scholar 

  170. Dimitrov EL, DeJoseph MR, Brownfield MS, Urban JH. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity. Endocrinology. 2007;148(8):3666–73. Epub 2007/04/28.

    Article  CAS  PubMed  Google Scholar 

  171. Tuchelt H, Dekker K, Bahr V, Oelkers W. Dose-response relationship between plasma ACTH and serum cortisol in the insulin-hypoglycaemia test in 25 healthy subjects and 109 patients with pituitary disease. Clin Endocrinol. 2000;53(3):301–7. Epub 2000/09/06.

    Article  CAS  Google Scholar 

  172. Levy BH, Tasker JG. Synaptic regulation of the hypothalamic-pituitary-adrenal axis and its modulation by glucocorticoids and stress. Front Cell Neurosci. 2012;6:24. Epub 2012/05/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sanchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, et al. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology. 2009;150(5):2283–91. Epub 2009/01/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Blake NG, Eckland DJ, Foster OJ, Lightman SL. Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology. 1991;129(5):2714–8. Epub 1991/11/01.

    Article  CAS  PubMed  Google Scholar 

  175. Harris AR, Fang SL, Azizi F, Lipworth L, Vagenakis AG, Barverman LE. Effect of starvation on hypothalamic-pituitary-thyroid function in the rat. Metab Clin Exp. 1978;27(9):1074–83. Epub 1978/09/01.

    Article  CAS  PubMed  Google Scholar 

  176. Harris AR, Fang SL, Vagenakis AG, Braverman LE. Effect of starvation, nutriment replacement, and hypothyroidism on in vitro hepatic T4 to T3 conversion in the rat. Metab Clin Exp. 1978;27(11):1680–90. Epub 1978/11/01.

    Article  CAS  PubMed  Google Scholar 

  177. Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138(6):2569–76. Epub 1997/06/01.

    Article  CAS  PubMed  Google Scholar 

  178. Rondeel JM, Heide R, de Greef WJ, van Toor H, van Haasteren GA, Klootwijk W, et al. Effect of starvation and subsequent refeeding on thyroid function and release of hypothalamic thyrotropin-releasing hormone. Neuroendocrinology. 1992;56(3):348–53. Epub 1992/09/01.

    Article  CAS  PubMed  Google Scholar 

  179. Flier JS, Harris M, Hollenberg AN. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J Clin Invest. 2000;105(7):859–61. Epub 2000/04/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Adler SM, Wartofsky L. The nonthyroidal illness syndrome. Endocrinol Metab Clin N Am. 2007;36(3):657–72. vi. Epub 2007/08/04.

    Article  CAS  Google Scholar 

  181. Bartalena L. The dilemma of non-thyroidal illness syndrome: to treat or not to treat? J Endocrinol Investig. 2003;26(12):1162. Epub 2004/04/02.

    Article  CAS  Google Scholar 

  182. DeGroot LJ. “Non-thyroidal illness syndrome” is functional central hypothyroidism, and if severe, hormone replacement is appropriate in light of present knowledge. J Endocrinol Investig. 2003;26(12):1163–70. Epub 2004/04/02.

    Article  CAS  Google Scholar 

  183. Lee S, Farwell AP. Euthyroid sick syndrome. Compr Physiol. 2016;6(2):1071–80. Epub 2016/04/12.

    Article  PubMed  Google Scholar 

  184. Stathatos N, Wartofsky L. The euthyroid sick syndrome: is there a physiologic rationale for thyroid hormone treatment? J Endocrinol Investig. 2003;26(12):1174–9. Epub 2004/04/02.

    Article  CAS  Google Scholar 

  185. Wartofsky L, Burman KD, Ringel MD. Trading one “dangerous dogma” for another? Thyroid hormone treatment of the “euthyroid sick syndrome”. J Clin Endocrinol Metab. 1999;84(5):1759–60. Epub 1999/05/14.

    CAS  PubMed  Google Scholar 

  186. Fekete C, Kelly J, Mihaly E, Sarkar S, Rand WM, Legradi G, et al. Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology. 2001;142(6):2606–13. Epub 2001/05/18.

    Article  CAS  PubMed  Google Scholar 

  187. Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM, et al. Alpha-melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci. 2000;20(4):1550–8. Epub 2000/02/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fekete C, Mihaly E, Luo LG, Kelly J, Clausen JT, Mao Q, et al. Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J Neurosci. 2000;20(24):9224–34. Epub 2000/01/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Fekete C, Sarkar S, Rand WM, Harney JW, Emerson CH, Bianco AC, et al. Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic-pituitary-thyroid axis. Endocrinology. 2002;143(12):4513–9. Epub 2002/11/26.

    Article  CAS  PubMed  Google Scholar 

  190. Fekete C, Sarkar S, Rand WM, Harney JW, Emerson CH, Bianco AC, et al. Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology. 2002;143(10):3846–53. Epub 2002/09/20.

    Article  CAS  PubMed  Google Scholar 

  191. Rugarli EI, Ballabio A. Kallmann syndrome. From genetics to neurobiology. JAMA. 1993;270(22):2713–6. Epub 1993/12/08.

    Article  CAS  PubMed  Google Scholar 

  192. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278(5335):135–8. Epub 1997/10/06.

    Article  CAS  PubMed  Google Scholar 

  193. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 2000;21(3):263–307. Epub 2000/07/07.

    Article  CAS  PubMed  Google Scholar 

  194. Elias CF, Kelly JF, Lee CE, Ahima RS, Drucker DJ, Saper CB, et al. Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol. 2000;423(2):261–81. Epub 2000/06/27.

    Article  CAS  PubMed  Google Scholar 

  195. Clarke IJ, Cummins JT. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology. 1982;111(5):1737–9. Epub 1982/11/01.

    Article  CAS  PubMed  Google Scholar 

  196. Ekholm C, Clark MR, Magnusson C, Isaksson O, LeMaire WJ. Ovulation induced by a gonadotropin releasing hormone analog in hypophysectomized rats involves prostaglandins. Endocrinology. 1982;110(1):288–90. Epub 1982/01/01.

    Article  CAS  PubMed  Google Scholar 

  197. Moenter SM, Caraty A, Locatelli A, Karsch FJ. Pattern of gonadotropin-releasing hormone (GnRH) secretion leading up to ovulation in the ewe: existence of a preovulatory GnRH surge. Endocrinology. 1991;129(3):1175–82. Epub 1991/09/01.

    Article  CAS  PubMed  Google Scholar 

  198. Johnson ES, Gendrich RL, White WF. Delay of puberty and inhibition of reproductive processes in the rat by a gonadotropin-releasing hormone agonist analog. Fertil Steril. 1976;27(7):853–60. Epub 1976/07/01.

    Article  CAS  PubMed  Google Scholar 

  199. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276(31):28969–75. Epub 2001/06/02.

    Article  CAS  PubMed  Google Scholar 

  200. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27. Epub 2003/10/24.

    Article  CAS  PubMed  Google Scholar 

  201. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6. Epub 2001/07/18.

    Article  CAS  PubMed  Google Scholar 

  202. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7. Epub 2001/06/01.

    Article  CAS  PubMed  Google Scholar 

  203. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102(5):1761–6. Epub 2005/01/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145(9):4073–7. Epub 2004/06/26.

    Article  CAS  PubMed  Google Scholar 

  205. Matsui H, Asami T. Effects and therapeutic potentials of kisspeptin analogs: regulation of the hypothalamic-pituitary-gonadal axis. Neuroendocrinology. 2014;99(1):49–60. Epub 2013/12/21.

    Article  CAS  PubMed  Google Scholar 

  206. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun. 2004;320(2):383–8. Epub 2004/06/29.

    Article  CAS  PubMed  Google Scholar 

  207. Bodo C, Kudwa AE, Rissman EF. Both estrogen receptor-alpha and -beta are required for sexual differentiation of the anteroventral periventricular area in mice. Endocrinology. 2006;147(1):415–20. Epub 2005/10/22.

    Article  CAS  PubMed  Google Scholar 

  208. Decourt C, Tillet Y, Caraty A, Franceschini I, Briant C. Kisspeptin immunoreactive neurons in the equine hypothalamus interactions with GnRH neuronal system. J Chem Neuroanat. 2008;36(3–4):131–7. Epub 2008/09/02.

    Article  CAS  PubMed  Google Scholar 

  209. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett. 2006;401(3):225–30. Epub 2006/04/20.

    Article  CAS  PubMed  Google Scholar 

  210. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146(9):3686–92. Epub 2005/05/28.

    Article  CAS  PubMed  Google Scholar 

  211. Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology. 2006;147(3):1154–8. Epub 2005/12/24.

    Article  CAS  PubMed  Google Scholar 

  212. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology. 2008;149(9):4387–95. Epub 2008/05/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Luo E, Stephens SB, Chaing S, Munaganuru N, Kauffman AS, Breen KM. Corticosterone blocks ovarian cyclicity and the LH surge via decreased Kisspeptin neuron activation in female mice. Endocrinology. 2016;157(3):1187–99. Epub 2015/12/25.

    Article  CAS  PubMed  Google Scholar 

  214. Stephens SB, Tolson KP, Rouse ML Jr, Poling MC, Hashimoto-Partyka MK, Mellon PL, et al. Absent progesterone signaling in kisspeptin neurons disrupts the LH surge and impairs fertility in female mice. Endocrinology. 2015;156(9):3091–7. Epub 2015/06/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Homma T, Sakakibara M, Yamada S, Kinoshita M, Iwata K, Tomikawa J, et al. Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol Reprod. 2009;81(6):1216–25. Epub 2009/08/18.

    Article  CAS  PubMed  Google Scholar 

  216. Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology. 2007;148(4):1774–83. Epub 2007/01/06.

    Article  CAS  PubMed  Google Scholar 

  217. Tomikawa J, Homma T, Tajima S, Shibata T, Inamoto Y, Takase K, et al. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol Reprod. 2010;82(2):313–9. Epub 2009/10/16.

    Article  CAS  PubMed  Google Scholar 

  218. Billings HJ, Connors JM, Altman SN, Hileman SM, Holaskova I, Lehman MN, et al. Neurokinin B acts via the neurokinin-3 receptor in the retrochiasmatic area to stimulate luteinizing hormone secretion in sheep. Endocrinology. 2010;151(8):3836–46. Epub 2010/06/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010;151(8):3479–89. Epub 2010/05/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology. 2010;151(1):301–11. Epub 2009/11/03.

    Article  CAS  PubMed  Google Scholar 

  221. Roa J, Navarro VM, Tena-Sempere M. Kisspeptins in reproductive biology: consensus knowledge and recent developments. Biol Reprod. 2011;85(4):650–60. Epub 2011/06/17.

    Article  CAS  PubMed  Google Scholar 

  222. Quennell JH, Howell CS, Roa J, Augustine RA, Grattan DR, Anderson GM. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology. 2011;152(4):1541–50. Epub 2011/02/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80(4):1523–631. Epub 2000/10/04.

    Article  CAS  PubMed  Google Scholar 

  224. Li C, Chen P, Smith MS. Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression. Neuroscience. 1999;94(1):117–29. Epub 1999/12/29.

    Article  CAS  PubMed  Google Scholar 

  225. Grattan DR. Behavioural significance of prolactin signalling in the central nervous system during pregnancy and lactation. Reproduction. 2002;123(4):497–506. Epub 2002/03/27.

    Article  CAS  PubMed  Google Scholar 

  226. Crowley WR. Neuroendocrine regulation of lactation and milk production. Compr Physiol. 2015;5(1):255–91. Epub 2015/01/16.

    PubMed  Google Scholar 

  227. John MR, Arai M, Rubin DA, Jonsson KB, Juppner H. Identification and characterization of the murine and human gene encoding the tuberoinfundibular peptide of 39 residues. Endocrinology. 2002;143(3):1047–57. Epub 2002/02/28.

    Article  CAS  PubMed  Google Scholar 

  228. Weaver RE, Mobarec JC, Wigglesworth MJ, Reynolds CA, Donnelly D. High affinity binding of the peptide agonist TIP-39 to the parathyroid hormone 2 (PTH2) receptor requires the hydroxyl group of Tyr-318 on transmembrane helix 5. Biochem Pharmacol. 2017;127:71–81. Epub 2016/12/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev. 2001;22(6):724–63. Epub 2001/12/12.

    Article  CAS  PubMed  Google Scholar 

  230. Romano N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, et al. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci. 2013;33(10):4424–33. Epub 2013/03/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Pi XJ, Grattan DR. Increased prolactin receptor immunoreactivity in the hypothalamus of lactating rats. J Neuroendocrinol. 1999;11(9):693–705. Epub 1999/08/14.

    Article  CAS  PubMed  Google Scholar 

  232. Walsh RJ, Slaby FJ, Posner BI. A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology. 1987;120(5):1846–50. Epub 1987/05/01.

    Article  CAS  PubMed  Google Scholar 

  233. Smith MS, True C, Grove KL. The neuroendocrine basis of lactation-induced suppression of GnRH: role of kisspeptin and leptin. Brain Res. 2010;1364:139–52. Epub 2010/08/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yamada S, Uenoyama Y, Kinoshita M, Iwata K, Takase K, Matsui H, et al. Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats. Endocrinology. 2007;148(5):2226–32. Epub 2007/02/10.

    Article  CAS  PubMed  Google Scholar 

  235. Smith MS. Lactation alters neuropeptide-Y and proopiomelanocortin gene expression in the arcuate nucleus of the rat. Endocrinology. 1993;133(3):1258–65. Epub 1993/09/01.

    Article  CAS  PubMed  Google Scholar 

  236. Smith MS, Grove KL. Integration of the regulation of reproductive function and energy balance: lactation as a model. Front Neuroendocrinol. 2002;23(3):225–56. Epub 2002/07/20.

    Article  CAS  PubMed  Google Scholar 

  237. Li C, Chen P, Smith MS. The acute suckling stimulus induces expression of neuropeptide Y (NPY) in cells in the dorsomedial hypothalamus and increases NPY expression in the arcuate nucleus. Endocrinology. 1998;139(4):1645–52. Epub 1998/04/07.

    Article  CAS  PubMed  Google Scholar 

  238. Chen P, Li C, Haskell-Luevano C, Cone RD, Smith MS. Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation. Endocrinology. 1999;140(6):2645–50. Epub 1999/05/26.

    Article  CAS  PubMed  Google Scholar 

  239. Haskell-Luevano C, Chen P, Li C, Chang K, Smith MS, Cameron JL, et al. Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology. 1999;140(3):1408–15. Epub 1999/03/06.

    Article  CAS  PubMed  Google Scholar 

  240. Li C, Chen P, Smith MS. Morphological evidence for direct interaction between arcuate nucleus neuropeptide Y (NPY) neurons and gonadotropin-releasing hormone neurons and the possible involvement of NPY Y1 receptors. Endocrinology. 1999;140(11):5382–90. Epub 1999/10/28.

    Article  CAS  PubMed  Google Scholar 

  241. Li C, Chen P, Smith MS. Neuropeptide Y and tuberoinfundibular dopamine activities are altered during lactation: role of prolactin. Endocrinology. 1999;140(1):118–23. Epub 1999/01/14.

    Article  CAS  PubMed  Google Scholar 

  242. Li C, Chen P, Smith MS. Identification of neuronal input to the arcuate nucleus (ARH) activated during lactation: implications in the activation of neuropeptide Y neurons. Brain Res. 1999;824(2):267–76. Epub 1999/04/10.

    Article  CAS  PubMed  Google Scholar 

  243. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78:149–72.

    Article  Google Scholar 

  244. Reeves AG, Plum F. Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch Neurol. 1969;20(6):616–24. Epub 1969/06/01.

    Article  CAS  PubMed  Google Scholar 

  245. Malenka RC, Nestler EJ, Hyman SE. Neural and neuroendocrine control of the internal milieu. In: Sydor A, Brown RY, editors. Molecular neuropharmacology; a foundation for clinical neuroscience. 2nd ed. New York: McGraw-Hill Medical; 2009. p. 263.

    Google Scholar 

  246. Theologides A. Anorexia-producing intermediary metabolites. Am J Clin Nutr. 1976;29(5):552–8. Epub 1976/05/01.

    Article  CAS  PubMed  Google Scholar 

  247. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32. Epub 1994/12/01.

    Article  CAS  PubMed  Google Scholar 

  248. Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet. 2002;3(8):589–600. Epub 2002/08/03.

    Article  CAS  PubMed  Google Scholar 

  249. Donato J Jr, Cravo RM, Frazao R, Gautron L, Scott MM, Lachey J, et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest. 2011;121(1):355–68. Epub 2010/12/25.

    Article  PubMed  Google Scholar 

  250. Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest. 2011;121(6):2087–93. Epub 2011/06/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20(1):68–100. Epub 1999/02/27.

    CAS  PubMed  Google Scholar 

  252. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71. Epub 2000/04/15.

    Article  CAS  PubMed  Google Scholar 

  253. Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest. 2011;121(6):2413–21. Epub 2011/05/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480–4. Epub 2001/05/25.

    Article  CAS  PubMed  Google Scholar 

  255. Nijenhuis WA, Oosterom J, Adan RA. AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol. 2001;15(1):164–71. Epub 2001/01/06

    CAS  PubMed  Google Scholar 

  256. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996;381(6581):415–21. Epub 1996/05/30.

    Article  CAS  PubMed  Google Scholar 

  257. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9. Epub 2000/07/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88(1):131–41. Epub 1997/01/10.

    Article  CAS  PubMed  Google Scholar 

  259. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16(3):303–6. Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  260. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7. Epub 1998/06/10.

    Article  CAS  PubMed  Google Scholar 

  261. Marks DL, Ling N, Cone RD. Role of the central melanocortin system in cachexia. Cancer Res. 2001;61(4):1432–8. Epub 2001/03/14.

    CAS  PubMed  Google Scholar 

  262. Wisse BE, Frayo RS, Schwartz MW, Cummings DE. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology. 2001;142(8):3292–301. Epub 2001/07/19.

    Article  CAS  PubMed  Google Scholar 

  263. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74(4–5):703–8. Epub 2002/01/16.

    Article  CAS  PubMed  Google Scholar 

  264. Saper CB. Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol. 1985;237(1):21–46. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  265. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37. Epub 2000/06/09.

    Article  CAS  PubMed  Google Scholar 

  266. Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev. 2006;27(7):719–27. Epub 2006/11/02.

    Article  CAS  PubMed  Google Scholar 

  267. Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A, et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology. 1992;130(6):3608–16. Epub 1992/06/01.

    Article  CAS  PubMed  Google Scholar 

  268. Woods SC, Seeley RJ, Porte D Jr, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science. 1998;280(5368):1378–83. Epub 1998/06/20.

    Article  CAS  PubMed  Google Scholar 

  269. Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, et al. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience. 2008;155(1):174–81. Epub 2008/06/25.

    Article  CAS  PubMed  Google Scholar 

  270. Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006;443(7112):709–12. Epub 2006/10/13.

    Article  CAS  Google Scholar 

  271. Price CJ, Samson WK, Ferguson AV. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res. 2008;1230:99–106. Epub 2008/07/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, et al. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology. 2009;150(1):232–8. Epub 2008/09/27.

    Article  CAS  PubMed  Google Scholar 

  273. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 2005;310(5750):996–9. Epub 2005/11/15.

    Article  CAS  PubMed  Google Scholar 

  274. Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016;73(4):737–55. Epub 2015/11/07.

    Article  CAS  PubMed  Google Scholar 

  275. Gavrieli A, Mantzoros CS. Novel molecules regulating energy homeostasis: physiology and regulation by macronutrient intake and weight loss. Endocrinol Metab. 2016;31(3):361–72. Epub 2016/07/30.

    Article  CAS  Google Scholar 

  276. Abraham G, Falcou R, Rozen R, Mandenoff A, Autissier N, Apfelbaum M. The effects of a constant T3 level and thermoneutrality in diet-induced hyperphagia. Hormone Metab Res. 1987;19(3):96–100. Epub 1987/03/01.

    Article  CAS  Google Scholar 

  277. Coppola A, Liu ZW, Andrews ZB, Paradis E, Roy MC, Friedman JM, et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 2007;5(1):21–33. Epub 2006/12/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S. Hypothalamic neuropeptide Y/Y1 receptor pathway activated by a reduction in circulating leptin, but not by an increase in circulating ghrelin, contributes to hyperphagia associated with triiodothyronine-induced thyrotoxicosis. Neuroendocrinology. 2003;78(6):321–30. Epub 2003/12/23.

    Article  CAS  PubMed  Google Scholar 

  279. Kong WM, Martin NM, Smith KL, Gardiner JV, Connoley IP, Stephens DA, et al. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology. 2004;145(11):5252–8. Epub 2004/08/07.

    Article  CAS  PubMed  Google Scholar 

  280. Luo L, MacLean DB. Effects of thyroid hormone on food intake, hypothalamic Na/K ATPase activity and ATP content. Brain Res. 2003;973(2):233–9. Epub 2003/05/10.

    Article  CAS  PubMed  Google Scholar 

  281. Syed MA, Thompson MP, Pachucki J, Burmeister LA. The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid Off J Am Thyr Ass. 1999;9(5):503–12. Epub 1999/06/12.

    Article  CAS  Google Scholar 

  282. Broedel O, Eravci M, Fuxius S, Smolarz T, Jeitner A, Grau H, et al. Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain. Am J Physiol Endocrinol Metab. 2003;285(3):E470–80. Epub 2003/05/09

    Article  CAS  PubMed  Google Scholar 

  283. Campos-Barros A, Musa A, Flechner A, Hessenius C, Gaio U, Meinhold H, et al. Evidence for circadian variations of thyroid hormone concentrations and type II 5′-iodothyronine deiodinase activity in the rat central nervous system. J Neurochem. 1997;68(2):795–803. Epub 1997/02/01.

    Article  CAS  PubMed  Google Scholar 

  284. Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett. 2008;582(1):74–80. Epub 2007/12/07.

    Article  CAS  PubMed  Google Scholar 

  285. Uchida-Kitajima S, Yamauchi T, Takashina Y, Okada-Iwabu M, Iwabu M, Ueki K, et al. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue. FEBS Lett. 2008;582(20):3037–44. Epub 2008/08/05.

    Article  CAS  PubMed  Google Scholar 

  286. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68. Epub 2007/07/10.

    Article  CAS  PubMed  Google Scholar 

  287. Lechan RM, Fekete C. Neuroendocrine and metabolic adaptations in the central nervous system to weight loss that facilitate weight regain. In: Freemark M, editor. Pediatric obesity; etiology, pathogenesis and treatment. New York, USA: Humana Press/Springer, 2010.

    Google Scholar 

  288. Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci. 2012;15(10):1350–5. Epub 2012/09/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83(3):1017–66. Epub 2003/07/05.

    Article  CAS  PubMed  Google Scholar 

  290. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84. Epub 2003/11/05.

    Article  CAS  PubMed  Google Scholar 

  291. Wittmann G, Deli L, Kallo I, Hrabovszky E, Watanabe M, Liposits Z, et al. Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus. J Comp Neurol. 2007;503(2):270–9. Epub 2007/05/12.

    Article  CAS  PubMed  Google Scholar 

  292. Jo YH, Chen YJ, Chua SC Jr, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron. 2005;48(6):1055–66. Epub 2005/12/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One. 2008;3(3):e1797. Epub 2008/03/13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron. 2011;71(1):142–54. Epub 2011/07/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Xu Y, Berglund ED, Sohn JW, Holland WL, Chuang JC, Fukuda M, et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nat Neurosci. 2010;13(12):1457–9. Epub 2010/11/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron. 2006;51(6):811–22. Epub 2006/09/20.

    Article  CAS  PubMed  Google Scholar 

  297. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9. Epub 2009/05/05.

    Article  CAS  PubMed  Google Scholar 

  298. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11. Epub 2002/04/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Reynolds SM, Berridge KC. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci. 2002;22(16):7308–20. Epub 2002/08/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Castrellon JJ, Seaman KL, Crawford JL, Young JS, Smith CT, Dang LC, et al. Individual differences in dopamine are associated with reward discounting in clinical groups but not in healthy adults. J Neurosci. 2019;39(2):321–32. Epub 2018/11/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kramer V, Juri C, Riss PJ, Pruzzo R, Soza-Ried C, Flores J, et al. Pharmacokinetic evaluation of [(18)F]PR04.MZ for PET/CT imaging and quantification of dopamine transporters in the human brain. Eur J Nucl Med Mol Imaging. 2019; Epub 2019/12/04.

    Google Scholar 

  302. Lee MR, Shin JH, Deschaine S, Daurio AM, Stangl BL, Yan J, et al. A role for the CD38 rs3796863 polymorphism in alcohol and monetary reward: evidence from CD38 knockout mice and alcohol self-administration, [11C]-raclopride binding, and functional MRI in humans. Am J Drug Alcohol Abuse. 2019:1–13. Epub 2019/08/01.

    Google Scholar 

  303. Meyer GM, Spay C, Laurencin C, Ballanger B, Sescousse G, Boulinguez P. Functional imaging studies of impulse control disorders in Parkinson’s disease need a stronger neurocognitive footing. Neurosci Biobehav Rev. 2019;98:164–76. Epub 2019/01/15.

    Article  PubMed  Google Scholar 

  304. Stark AJ, Smith CT, Lin YC, Petersen KJ, Trujillo P, van Wouwe NC, et al. Nigrostriatal and mesolimbic D2/3 receptor expression in Parkinson’s disease patients with compulsive reward-driven Behaviors. J Neurosci. 2018;38(13):3230–9. Epub 2018/02/28.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Tanabe J, Regner M, Sakai J, Martinez D, Gowin J. Neuroimaging reward, craving, learning, and cognitive control in substance use disorders: review and implications for treatment. Br J Radiol. 2019;92(1101):20180942. Epub 2019/03/12.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Thanarajah SE, Backes H, DiFeliceantonio AG, Albus K, Cremer AL, Hanssen R, et al. Food intake recruits Orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab. 2019;29(3):695–706. e4. Epub 2019/01/01.

    Article  CAS  PubMed  Google Scholar 

  307. Ritter S, Dinh TT, Li AJ. Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiol Behav. 2006;89(4):490–500. Epub 2006/08/05.

    Article  CAS  PubMed  Google Scholar 

  308. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012;16(5):579–87. Epub 2012/11/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J, et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem. 2004;279(19):19970–6. Epub 2004/03/19.

    Article  CAS  PubMed  Google Scholar 

  310. Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1207–28. Epub 2011/09/09.

    Article  CAS  PubMed  Google Scholar 

  311. Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis. 2000;31(Suppl 5):S157–61. Epub 2000/12/13.

    Article  PubMed  Google Scholar 

  312. Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol. 1998;512(Pt 3):883–92. Epub 1998/10/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Farrell MJ, Trevaks D, Taylor NA, McAllen RM. Regional brain responses associated with thermogenic and psychogenic sweating events in humans. J Neurophysiol. 2015;114(5):2578–87. Epub 2015/08/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Hefco E, Krulich L, Aschenbrenner JE. Effect of hypothalamic deafferentation on the secretion of thyrotropin during thyroid blockade and exposure to cold in the rat. Endocrinology. 1975;97(5):1234–40. Epub 1975/11/01.

    Article  CAS  PubMed  Google Scholar 

  315. Hefco E, Krulich L, Aschenbrenner JE. Effect of hypothalamic deafferentation on the secretion of thyrotropin in resting conditions in the rat. Endocrinology. 1975;97(5):1226–33. Epub 1975/11/01.

    Article  CAS  PubMed  Google Scholar 

  316. Hefco E, Krulich L, Illner P, Larsen PR. Effect of acute exposure to cold on the activity of the hypothalamic-pituitary-thyroid system. Endocrinology. 1975;97(5):1185–95. Epub 1975/11/01.

    Article  CAS  PubMed  Google Scholar 

  317. Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci. 2001;21(13):4864–74. Epub 2001/06/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Watts AG. The efferent projections of the suprachiasmatic nucleus; anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Repppert SM, editors. Suprachiasmatic nucleus; the mind’s clock. New York: Oxford University Press; 1991. p. 77–106.

    Google Scholar 

  319. Kolka MA, Stephenson LA. Control of sweating during the human menstrual cycle. Eur J Appl Physiol Occup Physiol. 1989;58(8):890–5. Epub 1989/01/01.

    Article  CAS  PubMed  Google Scholar 

  320. Lindsley G, Dowse HB, Burgoon PW, Kolka MA, Stephenson LA. A persistent circhoral ultradian rhythm is identified in human core temperature. Chronobiol Int. 1999;16(1):69–78. Epub 1999/02/19.

    Article  CAS  PubMed  Google Scholar 

  321. Stephenson LA, Kolka MA. Esophageal temperature threshold for sweating decreases before ovulation in premenopausal women. J Appl Physiol. 1999;86(1):22–8. Epub 1999/01/14.

    Article  CAS  PubMed  Google Scholar 

  322. McEwen BS. Neural gonadal steroid actions. Science. 1981;211(4488):1303–11. Epub 1981/03/20.

    Article  CAS  PubMed  Google Scholar 

  323. Nakayama T, Suzuki M, Ishizuka N. Action of progesterone on preoptic thermosensitive neurones. Nature. 1975;258(5530):80. Epub 1975/11/06.

    Article  CAS  PubMed  Google Scholar 

  324. Silva NL, Boulant JA. Effects of testosterone, estradiol, and temperature on neurons in preoptic tissue slices. Am J Phys. 1986;250(4 Pt 2):R625–32. Epub 1986/04/01.

    CAS  Google Scholar 

  325. Freedman RR. Physiology of hot flashes. Am J Hum Biol. 2001;13(4):453–64. Epub 2001/06/16.

    Article  CAS  PubMed  Google Scholar 

  326. Freedman RR, Norton D, Woodward S, Cornelissen G. Core body temperature and circadian rhythm of hot flashes in menopausal women. J Clin Endocrinol Metab. 1995;80(8):2354–8. Epub 1995/08/01.

    CAS  PubMed  Google Scholar 

  327. Freedman RR, Dinsay R. Clonidine raises the sweating threshold in symptomatic but not in asymptomatic postmenopausal women. Fertil Steril. 2000;74(1):20–3. Epub 2000/07/19.

    Article  CAS  PubMed  Google Scholar 

  328. Cypess AM, Kahn CR. The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr. 2010;22(4):478–84. Epub 2010/05/22.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52. Epub 2007/05/03.

    Article  CAS  PubMed  Google Scholar 

  330. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. Epub 2009/04/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Rachid B, van de Sande-Lee S, Rodovalho S, Folli F, Beltramini GC, Morari J, et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes. 2015;39(10):1515–22. Epub 2015/05/23.

    Article  CAS  Google Scholar 

  332. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9(2):203–9. Epub 2009/02/04.

    Article  CAS  PubMed  Google Scholar 

  333. Tam CS, Lecoultre V, Ravussin E. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation. 2012;125(22):2782–91. Epub 2012/06/06.

    Article  PubMed  Google Scholar 

  334. Liu J, Lin L. Small molecules for fat combustion: targeting thermosensory and satiety signals in the central nervous system. Drug Discov Today. 2019;24(1):300–6. Epub 2018/09/25.

    Article  CAS  PubMed  Google Scholar 

  335. Wang B, Li A, Li X, Ho PW, Wu D, Wang X, et al. Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system. EMBO Rep. 2018;19(4). Epub 2018/02/23.

    Google Scholar 

  336. Contreras C, Nogueiras R, Dieguez C, Medina-Gomez G, Lopez M. Hypothalamus and thermogenesis: heating the BAT, browning the WAT. Mol Cell Endocrinol. 2016;438:107–15. Epub 2016/08/09.

    Article  CAS  PubMed  Google Scholar 

  337. Contreras C, Nogueiras R, Dieguez C, Rahmouni K, Lopez M. Traveling from the hypothalamus to the adipose tissue: the thermogenic pathway. Redox Biol. 2017;12:854–63. Epub 2017/04/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Lopez M, Dieguez C, Nogueiras R. Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocytes. 2015;4(2):141–5. Epub 2015/07/15.

    Article  CAS  Google Scholar 

  339. Yang X, Ruan HB. Neuronal control of adaptive thermogenesis. Front Endocrinol. 2015;6:149. Epub 2015/10/07

    Article  Google Scholar 

  340. Duff GW. Is fever beneficial to the host: a clinical perspective. Yale J Biol Med. 1986;59(2):125–30. Epub 1986/03/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Kluger MJ. The adaptive value of fever. In: Mackowiak PA, editor. Fever; basic mechanisms and management. New York: Raven Press; 1991. p. 105–24.

    Google Scholar 

  342. Elmquist JK, Saper CB. Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. J Comp Neurol. 1996;374(3):315–31. Epub 1996/10/21.

    Article  CAS  PubMed  Google Scholar 

  343. Elmquist JK, Scammell TE, Jacobson CD, Saper CB. Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J Comp Neurol. 1996;371(1):85–103. Epub 1996/07/15.

    Article  CAS  PubMed  Google Scholar 

  344. Elmquist JK, Scammell TE, Saper CB. Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci. 1997;20(12):565–70. Epub 1998/01/07.

    Article  CAS  PubMed  Google Scholar 

  345. Contreras C, Gonzalez F, Ferno J, Dieguez C, Rahmouni K, Nogueiras R, et al. The brain and brown fat. Ann Med. 2015;47(2):150–68. Epub 2014/06/11.

    Article  CAS  PubMed  Google Scholar 

  346. Erden Y, Tekin S, Sandal S, Onalan EE, Tektemur A, Kirbag S. Effects of central irisin administration on the uncoupling proteins in rat brain. Neurosci Lett. 2016;618:6–13. Epub 2016/03/02.

    Article  CAS  PubMed  Google Scholar 

  347. Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, et al. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur J Pharmacol. 2016;791:389–94. Epub 2016/10/30.

    Article  CAS  PubMed  Google Scholar 

  348. Tekin S, Beytur A, Erden Y, Beytur A, Cigremis Y, Vardi N, et al. Effects of intracerebroventricular administration of irisin on the hypothalamus-pituitary-gonadal axis in male rats. J Cell Physiol. 2019;234(6):8815–24. Epub 2018/10/15.

    Article  CAS  PubMed  Google Scholar 

  349. Tekin S, Erden Y, Ozyalin F, Cigremis Y, Colak C, Sandal S. The effects of intracerebroventricular infusion of irisin on feeding behaviour in rats. Neurosci Lett. 2017;645:25–32. Epub 2017/03/01.

    Article  CAS  PubMed  Google Scholar 

  350. Tekin S, Erden Y, Ozyalin F, Onalan EE, Cigremis Y, Colak C, et al. Central irisin administration suppresses thyroid hormone production but increases energy consumption in rats. Neurosci Lett. 2018;674:136–41. Epub 2018/03/27.

    Article  CAS  PubMed  Google Scholar 

  351. Wahab F, Drummer C, Matz-Rensing K, Fuchs E, Behr R. Irisin is expressed by undifferentiated spermatogonia and modulates gene expression in organotypic primate testis cultures. Mol Cell Endocrinol. 2019;110670. Epub 2019/12/06.

    Google Scholar 

  352. Wahab F, Khan IU, Polo IR, Zubair H, Drummer C, Shahab M, et al. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J Endocrinol. 2019;241(3):175–87. Epub 2019/03/27.

    Article  CAS  PubMed  Google Scholar 

  353. Kreigsfeld LJ, LeSaute J, Hamada T, Pitts SM, Silver R. Circadian rhythms in the endocrine system. In: Pfaff DW, Arnold AP, Etgen AM, Fahrback SE, Rubin RT, editors. Hormones, brain and behavior. Cambridge, Massachusetts: Academic Press, 2002. p. 33–91.

    Google Scholar 

  354. Moore RY. Circadian timing. In: Zigmond MJ, Bloom FE, Landis SC, Robetos JL, Squire LR, editors. Fundamental neuroscience. Cambridge, Massachusetts: Academic Press, 1999. p. 1189–1208.

    Google Scholar 

  355. Shirakawa T, Honma S, Honma K. Multiple oscillators in the suprachiasmatic nucleus. Chronobiol Int. 2001;18(3):371–87. Epub 2001/07/28.

    Article  CAS  PubMed  Google Scholar 

  356. Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14(4):697–706. Epub 1995/04/01.

    Article  CAS  PubMed  Google Scholar 

  357. Ibuka N, Inouye SI, Kawamura H. Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res. 1977;122(1):33–47. Epub 1977/02/11.

    Article  CAS  PubMed  Google Scholar 

  358. Kafka MS, Wirz-Justice A, Naber D, Moore RY, Benedito MA. Circadian rhythms in rat brain neurotransmitter receptors. Fed Proc. 1983;42(11):2796–801. Epub 1983/08/01.

    CAS  PubMed  Google Scholar 

  359. Moore RY. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc. 1983;42(11):2783–9. Epub 1983/08/01.

    CAS  PubMed  Google Scholar 

  360. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8. Epub 1990/02/23.

    Article  CAS  PubMed  Google Scholar 

  361. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449(7159):228–32. Epub 2007/08/31.

    Article  CAS  PubMed  Google Scholar 

  362. Mrosovsky N. Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc. 1996;71(3):343–72. Epub 1996/08/01.

    Article  CAS  PubMed  Google Scholar 

  363. Zee PC, Manthena P. The brain’s master circadian clock: implications and opportunities for therapy of sleep disorders. Sleep Med Rev. 2007;11(1):59–70. Epub 2006/09/16.

    Article  PubMed  Google Scholar 

  364. Tonsfeldt KJ, Chappell PE. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol. 2012;349(1):3–12. Epub 2011/07/27.

    Article  CAS  PubMed  Google Scholar 

  365. Gillette MU, Tischkau SA. Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res. 1999;54:33–58. discussion -9. Epub 1999/11/05.

    CAS  PubMed  Google Scholar 

  366. Moore RY. Neural control of the pineal gland. Behav Brain Res. 1996;73(1–2):125–30. Epub 1996/01/01.

    CAS  PubMed  Google Scholar 

  367. Arendt J. Melatonin, circadian rhythms, and sleep. N Engl J Med. 2000;343(15):1114–6. Epub 2000/10/12.

    Article  CAS  PubMed  Google Scholar 

  368. Azzali G, Arcari ML, Cacchioli A, Toni R. Fine structure and photoperiodical seasonal changes in pars tuberalis of hibernating bats. Ital J Anat Embryol. 2003;108(1):49–64. Epub 2003/05/10.

    PubMed  Google Scholar 

  369. Azzali G, Arcari ML, Spaggiari B, Romita G. Ultrastructural aspects of the follicular cells of the pars tuberalis in bats related to the seasonal cycle. Anat Rec A Discov Mol Cell Evol Biol. 2003;273(2):763–71. Epub 2003/07/08.

    Article  PubMed  Google Scholar 

  370. Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem. 2007;102(6):1713–26. Epub 2007/06/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Karsch FJ, Bittman EL, Robinson JE, Yellon SM, Wayne NL, Olster DH, et al. Melatonin and photorefractoriness: loss of response to the melatonin signal leads to seasonal reproductive transitions in the ewe. Biol Reprod. 1986;34(2):265–74. Epub 1986/03/01.

    Article  CAS  PubMed  Google Scholar 

  372. Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythm. 2006;21(6):482–93. Epub 2006/11/17.

    Article  CAS  Google Scholar 

  373. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24(12):726–31. Epub 2001/11/24.

    Article  CAS  PubMed  Google Scholar 

  374. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271(5246):216–9. Epub 1996/01/12.

    Article  CAS  PubMed  Google Scholar 

  375. Lugaresi E. The thalamus and insomnia. Neurology. 1992;42(7 Suppl 6):28–33. Epub 1992/07/01.

    CAS  PubMed  Google Scholar 

  376. Steriade M. The thalamus and sleep disturbances. In: Guilleminault C, Lugaresi E, Montagna P, Gambetti P, editors. Fatal familial insomnia; inherited prion diseases, sleep and the thalamus. New York: Raven Press; 1994. p. 177–89.

    Google Scholar 

  377. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(4):455–73. Epub 1949/11/01.

    Article  CAS  PubMed  Google Scholar 

  378. Canteras NS. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol Biochem Behav. 2002;71(3):481–91. Epub 2002/02/07.

    Article  CAS  PubMed  Google Scholar 

  379. Swanson LW. Cerebral hemisphere regulation of motivated behavior. Brain Res. 2000;886(1–2):113–64. Epub 2000/12/20.

    Article  CAS  PubMed  Google Scholar 

  380. Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology. 1980;31(6):410–7. Epub 1980/12/01.

    Article  CAS  PubMed  Google Scholar 

  381. Blanchard DC, Canteras NS, Markham CM, Pentkowski NS, Blanchard RJ. Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a cat, cat odor, and nonpredator threat. Neurosci Biobehav Rev. 2005;29(8):1243–53. Epub 2005/08/09.

    Article  PubMed  Google Scholar 

  382. McGregor IS, Adamec R, Canteras NS, Blanchard RJ, Blanchard DC. Defensive behavior. Neurosci Biobehav Rev. 2005;29(8):1121–2. Epub 2005/08/17.

    Article  PubMed  Google Scholar 

  383. Ribeiro-Barbosa ER, Canteras NS, Cezario AF, Blanchard RJ, Blanchard DC. An alternative experimental procedure for studying predator-related defensive responses. Neurosci Biobehav Rev. 2005;29(8):1255–63. Epub 2005/08/27.

    Article  CAS  PubMed  Google Scholar 

  384. Cezario AF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS. Hypothalamic sites responding to predator threats--the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur J Neurosci. 2008;28(5):1003–15. Epub 2008/08/12.

    Article  CAS  PubMed  Google Scholar 

  385. Blanchard DC, Li CI, Hubbard D, Markham CM, Yang M, Takahashi LK, et al. Dorsal premammillary nucleus differentially modulates defensive behaviors induced by different threat stimuli in rats. Neurosci Lett. 2003;345(3):145–8. Epub 2003/07/05.

    Article  CAS  PubMed  Google Scholar 

  386. Canteras NS, Simerly RB, Swanson LW. Projections of the ventral premammillary nucleus. J Comp Neurol. 1992;324(2):195–212. Epub 1992/10/08.

    Article  CAS  PubMed  Google Scholar 

  387. Canteras NS, Swanson LW. The dorsal premammillary nucleus: an unusual component of the mammillary body. Proc Natl Acad Sci U S A. 1992;89(21):10089–93. Epub 1992/11/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol. 1995;46(6):575–605. Epub 1995/08/01.

    Article  CAS  PubMed  Google Scholar 

  389. Lenz KM, McCarthy MM. Organized for sex - steroid hormones and the developing hypothalamus. Eur J Neurosci. 2010;32(12):2096–104. Epub 2010/12/15.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Motta SC, Goto M, Gouveia FV, Baldo MV, Canteras NS, Swanson LW. Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc Natl Acad Sci U S A. 2009;106(12):4870–5. Epub 2009/03/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Lechan RM, Toni R. Functional anatomy of the hypothalamus and pituitary. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [internet]. South Dartmouth (MA): MDText.com, Inc.; Updated; 2016.

    Google Scholar 

  392. Kaiser U, Ho KK. Pituitary physiology and diagnostic evaluation. In: Melmed S, Polonsky KS, Reed Larsen P, Kronenberg HM, editors. Williams textbook of endocrinology. 13th ed. Elsevier; 2016. p. 176–231.

    Google Scholar 

  393. Braak H, Braak E. Anatomy of the human hypothalamus (chiasmatic and tuberal region). Prog Brain Res. 1992;93:3–14; discussion -6. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  394. Chanson P, Daujat F, Young J, Bellucci A, Kujas M, Doyon D, et al. Normal pituitary hypertrophy as a frequent cause of pituitary incidentaloma: a follow-up study. J Clin Endocrinol Metab. 2001;86(7):3009–15. Epub 2001/07/10.

    Article  CAS  PubMed  Google Scholar 

  395. Cooke NE, Coit D, Weiner RI, Baxter JD, Martial JA. Structure of cloned DNA complementary to rat prolactin messenger RNA. J Biol Chem. 1980;255(13):6502–10. Epub 1980/07/10.

    Article  CAS  PubMed  Google Scholar 

  396. Suganuma N, Seo H, Yamamoto N, Kikkawa F, Narita O, Tomoda Y, et al. Ontogenesis of pituitary prolactin in the human fetus. J Clin Endocrinol Metab. 1986;63(1):156–61. Epub 1986/07/01.

    Article  CAS  PubMed  Google Scholar 

  397. Sinha YN. Structural variants of prolactin: occurrence and physiological significance. Endocr Rev. 1995;16(3):354–69. Epub 1995/06/01.

    Article  CAS  PubMed  Google Scholar 

  398. Lewis UJ, Singh RN, Sinha YN, Vanderlaan WP. Glycosylated human prolactin. Endocrinology. 1985;116(1):359–63. Epub 1985/01/01.

    Article  CAS  PubMed  Google Scholar 

  399. Hu ZZ, Zhuang L, Meng J, Leondires M, Dufau ML. The human prolactin receptor gene structure and alternative promoter utilization: the generic promoter hPIII and a novel human promoter hP(N). J Clin Endocrinol Metab. 1999;84(3):1153–6. Epub 1999/03/20.

    Article  CAS  PubMed  Google Scholar 

  400. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19(3):225–68. Epub 1998/06/17.

    Article  CAS  PubMed  Google Scholar 

  401. Liu JW, Ben-Jonathan N. Prolactin-releasing activity of neurohypophysial hormones: structure-function relationship. Endocrinology. 1994;134(1):114–8. Epub 1994/01/01.

    Article  CAS  PubMed  Google Scholar 

  402. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 1997;16(23):6926–35. Epub 1998/01/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Veldhuis JD, Johnson ML. Operating characteristics of the hypothalamo-pituitary-gonadal axis in men: circadian, ultradian, and pulsatile release of prolactin and its temporal coupling with luteinizing hormone. J Clin Endocrinol Metab. 1988;67(1):116–23. Epub 1988/07/01.

    Article  CAS  PubMed  Google Scholar 

  404. Katznelson L, Riskind PN, Saxe VC, Klibanski A. Prolactin pulsatile characteristics in postmenopausal women. J Clin Endocrinol Metab. 1998;83(3):761–4. Epub 1998/03/20.

    CAS  PubMed  Google Scholar 

  405. Riddle O. Prolactin in vertebrate function and organization. J Natl Cancer Inst. 1963;31:1039–110. Epub 1963/11/01.

    CAS  PubMed  Google Scholar 

  406. Matsuzaki T, Azuma K, Irahara M, Yasui T, Aono T. Mechanism of anovulation in hyperprolactinemic amenorrhea determined by pulsatile gonadotropin-releasing hormone injection combined with human chorionic gonadotropin. Fertil Steril. 1994;62(6):1143–9. Epub 1994/12/01.

    Article  CAS  PubMed  Google Scholar 

  407. Ho Y, Liebhaber SA, Cooke NE. Activation of the human GH gene cluster: roles for targeted chromatin modification. Trends Endocrinol Metab. 2004;15(1):40–5. Epub 2003/12/25.

    Article  CAS  PubMed  Google Scholar 

  408. Baumann G, MacCart JG, Amburn K. The molecular nature of circulating growth hormone in normal and acromegalic man: evidence for a principal and minor monomeric forms. J Clin Endocrinol Metab. 1983;56(5):946–52. Epub 1983/05/01.

    Article  CAS  PubMed  Google Scholar 

  409. Leung KC, Waters MJ, Markus I, Baumbach WR, Ho KK. Insulin and insulin-like growth factor-I acutely inhibit surface translocation of growth hormone receptors in osteoblasts: a novel mechanism of growth hormone receptor regulation. Proc Natl Acad Sci U S A. 1997;94(21):11381–6. Epub 1997/10/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Xu BC, Wang X, Darus CJ, Kopchick JJ. Growth hormone promotes the association of transcription factor STAT5 with the growth hormone receptor. J Biol Chem. 1996;271(33):19768–73. Epub 1996/08/16.

    Article  CAS  PubMed  Google Scholar 

  411. Le Roith D, Scavo L, Butler A. What is the role of circulating IGF-I? Trends Endocrinol Metab. 2001;12(2):48–52. Epub 2001/02/13.

    Article  CAS  PubMed  Google Scholar 

  412. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19(6):717–97. Epub 1998/12/23.

    CAS  PubMed  Google Scholar 

  413. Ho KY, Veldhuis JD, Johnson ML, Furlanetto R, Evans WS, Alberti KG, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest. 1988;81(4):968–75. Epub 1988/04/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21(6):553–66. Epub 1998/10/21.

    PubMed  Google Scholar 

  415. Rudling M, Norstedt G, Olivecrona H, Reihner E, Gustafsson JA, Angelin B. Importance of growth hormone for the induction of hepatic low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1992;89(15):6983–7. Epub 1992/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77. Epub 2009/02/26.

    Article  PubMed  CAS  Google Scholar 

  417. Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T, Enjalbert A, et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell. 2001;104(6):849–59. Epub 2001/04/06.

    Article  CAS  PubMed  Google Scholar 

  418. Cochet M, Chang AC, Cohen SN. Characterization of the structural gene and putative 5′-regulatory sequences for human proopiomelanocortin. Nature. 1982;297(5864):335–9. Epub 1982/05/27.

    Article  CAS  PubMed  Google Scholar 

  419. Clark AJL, Swords FM. Molecular pathology of corticotroph function. In: Rappaport R, Amselem S, editors. Hypothalamic-pituitary development. Basel: Karger; 2001.

    Google Scholar 

  420. Jenks BG. Regulation of proopiomelanocortin gene expression: an overview of the signaling cascades, transcription factors, and responsive elements involved. Ann N Y Acad Sci. 2009;1163:17–30. Epub 2009/05/22.

    Article  CAS  PubMed  Google Scholar 

  421. Jin WD, Boutillier AL, Glucksman MJ, Salton SR, Loeffler JP, Roberts JL. Characterization of a corticotropin-releasing hormone-responsive element in the rat proopiomelanocortin gene promoter and molecular cloning of its binding protein. Mol Endocrinol. 1994;8(10):1377–88. Epub 1994/10/01.

    CAS  PubMed  Google Scholar 

  422. Seidah NG, Chretien M. Complete amino acid sequence of a human pituitary glycopeptide: an important maturation product of pro-opiomelanocortin. Proc Natl Acad Sci U S A. 1981;78(7):4236–40. Epub 1981/07/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Keeney DS, Waterman MR. Regulation of steroid hydroxylase gene expression: importance to physiology and disease. Pharmacol Ther. 1993;58(3):301–17. Epub 1993/06/01.

    Article  CAS  PubMed  Google Scholar 

  424. Veldhuis JD, Iranmanesh A, Johnson ML, Lizarralde G. Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. J Clin Endocrinol Metab. 1990;71(6):1616–23. Epub 1990/12/01.

    Article  CAS  PubMed  Google Scholar 

  425. Dorin RI, Ferries LM, Roberts B, Qualls CR, Veldhuis JD, Lisansky EJ. Assessment of stimulated and spontaneous adrenocorticotropin secretory dynamics identifies distinct components of cortisol feedback inhibition in healthy humans. J Clin Endocrinol Metab. 1996;81(11):3883–91. Epub 1996/11/01.

    CAS  PubMed  Google Scholar 

  426. Gharib SD, Wierman ME, Shupnik MA, Chin WW. Molecular biology of the pituitary gonadotropins. Endocr Rev. 1990;11(1):177–99. Epub 1990/02/01.

    Article  CAS  PubMed  Google Scholar 

  427. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467–75. Epub 2013/06/07.

    Article  CAS  PubMed  Google Scholar 

  428. Ying SY. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev. 1988;9(2):267–93. Epub 1988/05/01.

    Article  CAS  PubMed  Google Scholar 

  429. Kristrom B, Zdunek AM, Rydh A, Jonsson H, Sehlin P, Escher SA. A novel mutation in the LIM homeobox 3 gene is responsible for combined pituitary hormone deficiency, hearing impairment, and vertebral malformations. J Clin Endocrinol Metab. 2009;94(4):1154–61. Epub 2009/01/08

    Article  PubMed  CAS  Google Scholar 

  430. Moschos S, Chan JL, Mantzoros CS. Leptin and reproduction: a review. Fertil Steril. 2002;77(3):433–44. Epub 2002/03/02.

    Article  PubMed  Google Scholar 

  431. Naor Z. Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol. 2009;30(1):10–29. Epub 2008/08/19.

    Article  CAS  PubMed  Google Scholar 

  432. Santen RJ, Bardin CW. Episodic luteinizing hormone secretion in man. Pulse analysis, clinical interpretation, physiologic mechanisms. J Clin Invest. 1973;52(10):2617–28. Epub 1973/10/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120(4):963–72. Epub 2010/04/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 2000;21(5):551–83. Epub 2000/10/21.

    Article  CAS  PubMed  Google Scholar 

  435. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol. 2010;205(2):117–31. Epub 2010/02/11.

    Article  CAS  PubMed  Google Scholar 

  436. Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Annu Rev Biochem. 1981;50:465–95. Epub 1981/01/01.

    Article  CAS  PubMed  Google Scholar 

  437. Grossmann M, Weintraub BD, Szkudlinski MW. Novel insights into the molecular mechanisms of human thyrotropin action: structural, physiological, and therapeutic implications for the glycoprotein hormone family. Endocr Rev. 1997;18(4):476–501. Epub 1997/08/01.

    Article  CAS  PubMed  Google Scholar 

  438. Lania A, Persani L, Ballare E, Mantovani S, Losa M, Spada A. Constitutively active Gs alpha is associated with an increased phosphodiesterase activity in human growth hormone-secreting adenomas. J Clin Endocrinol Metab. 1998;83(5):1624–8. Epub 1998/05/20.

    CAS  PubMed  Google Scholar 

  439. Chiamolera MI, Wondisford FE. Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology. 2009;150(3):1091–6. Epub 2009/01/31.

    Article  CAS  PubMed  Google Scholar 

  440. Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res. 2006;153:209–35. Epub 2006/08/01.

    Article  CAS  PubMed  Google Scholar 

  441. Abel ED, Kaulbach HC, Campos-Barros A, Ahima RS, Boers ME, Hashimoto K, et al. Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin. J Clin Invest. 1999;103(2):271–9. Epub 1999/01/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Samuels MH, Henry P, Ridgway EC. Effects of dopamine and somatostatin on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab. 1992;74(1):217–22. Epub 1992/01/01.

    CAS  PubMed  Google Scholar 

  443. Cooper DS, Klibanski A, Ridgway EC. Dopaminergic modulation of TSH and its subunits: in vivo and in vitro studies. Clin Endocrinol. 1983;18(3):265–75. Epub 1983/03/01.

    Article  CAS  Google Scholar 

  444. Wang R, Nelson JC, Wilcox RB. Salsalate administration--a potential pharmacological model of the sick euthyroid syndrome. J Clin Endocrinol Metab. 1998;83(9):3095–9. Epub 1998/09/24.

    CAS  PubMed  Google Scholar 

  445. Ridgway EC, Weintraub BD, Maloof F. Metabolic clearance and production rates of human thyrotropin. J Clin Invest. 1974;53(3):895–903. Epub 1974/03/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Van den Berghe G, de Zegher F, Veldhuis JD, Wouters P, Gouwy S, Stockman W, et al. Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol. 1997;47(5):599–612. Epub 1998/01/13.

    Article  Google Scholar 

  447. Goichot B, Weibel L, Chapotot F, Gronfier C, Piquard F, Brandenberger G. Effect of the shift of the sleep-wake cycle on three robust endocrine markers of the circadian clock. Am J Phys. 1998;275(2):E243–8. Epub 1998/08/04.

    CAS  Google Scholar 

  448. Roelfsema F, Pijl H, Kok P, Endert E, Fliers E, Biermasz NR, et al. Thyrotropin secretion in healthy subjects is robust and independent of age and gender, and only weakly dependent on body mass index. J Clin Endocrinol Metab. 2014;99(2):570–8. Epub 2013/11/28.

    Article  CAS  PubMed  Google Scholar 

  449. Makarenko IG, Ugrumov MV, Derer P, Calas A. Projections from the hypothalamus to the posterior lobe in rats during ontogenesis: 1,1′-dioctadecyl-3,3,3′, 3′-tetramethylindocarbocyanine perchlorate tracing study. J Comp Neurol. 2000;422(3):327–37. Epub 2000/06/22.

    Article  CAS  PubMed  Google Scholar 

  450. Robinson AG. The posterior pituitary. In: Gardner DG, Shoback D, editors. Greenspan's basic and clinical endocrinology. 10th ed. New York: McGraw-Hill; 2017. p. 121–36.

    Google Scholar 

  451. Sawchenko PE, Swanson LW. The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog Brain Res. 1983;60:19–29. Epub 1983/01/01.

    Article  CAS  PubMed  Google Scholar 

  452. Sofroniew MV. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res. 1983;60:101–14. Epub 1983/01/01.

    Article  CAS  PubMed  Google Scholar 

  453. Treier M, Rosenfeld MG. The hypothalamic-pituitary axis: co-development of two organs. Curr Opin Cell Biol. 1996;8(6):833–43. Epub 1996/12/01.

    Article  CAS  PubMed  Google Scholar 

  454. Robinson AG, Verbalis JG. Posterior Pituitary. In: Melmed S, Polonsky KS, Reed Larsen P, Kronenberg HM, editors. Williams textbook of endocrinology. 13th ed: Elsevier; 2015. p. 300–33.

    Google Scholar 

  455. Roberts MM, Robinson AG, Hoffman GE, Fitzsimmons MD. Vasopressin transport regulation is coupled to the synthesis rate. Neuroendocrinology. 1991;53(4):416–22. Epub 1991/04/01.

    Article  CAS  PubMed  Google Scholar 

  456. Barberis C, Mouillac B, Durroux T. Structural bases of vasopressin/oxytocin receptor function. J Endocrinol. 1998;156(2):223–9. Epub 1998/03/31.

    Article  CAS  PubMed  Google Scholar 

  457. Thrasher TN. Baroreceptor regulation of vasopressin and renin secretion: low-pressure versus high-pressure receptors. Front Neuroendocrinol. 1994;15(2):157–96. Epub 1994/06/01.

    Article  CAS  PubMed  Google Scholar 

  458. Pump B, Gabrielsen A, Christensen NJ, Bie P, Bestle M, Norsk P. Mechanisms of inhibition of vasopressin release during moderate antiorthostatic posture change in humans. Am J Phys. 1999;277(1):R229–35. Epub 1999/07/17.

    CAS  Google Scholar 

  459. Johnson AK, Thunhorst RL. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol. 1997;18(3):292–353. Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  460. Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res. 1976;33:333–85. Epub 1976/01/01.

    CAS  PubMed  Google Scholar 

  461. Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S. Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem. 2010;285(52):40777–84. Epub 2010/10/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Brown D. The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol. 2003;284(5):F893–901. Epub 2003/04/05.

    Article  CAS  PubMed  Google Scholar 

  463. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44. Epub 2002/01/05.

    Article  CAS  PubMed  Google Scholar 

  464. Glasier A, McNeilly AS. Physiology of lactation. Baillieres Clin Endocrinol Metab. 1990;4(2):379–95. Epub 1990/06/01.

    Article  CAS  PubMed  Google Scholar 

  465. Terzidou V, Blanks AM, Kim SH, Thornton S, Bennett PR. Labor and inflammation increase the expression of oxytocin receptor in human amnion. Biol Reprod. 2011;84(3):546–52. Epub 2010/10/12.

    Article  CAS  PubMed  Google Scholar 

  466. Vrachnis N, Malamas FM, Sifakis S, Deligeoroglou E, Iliodromiti Z. The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Int J Endocrinol. 2011;2011:350546. Epub 2011/12/23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  467. Boyd WH. Morphological features of the hypophyseal intermediate lobe directly related to its activity. Arch Histol Jpn. 1972;34(1):1–17. Epub 1972/01/01.

    Article  PubMed  Google Scholar 

  468. Brander J. The Intraglandular cleft of the pituitary body and its connections. J Anat. 1932;66(Pt 2):202–9. Epub 1932/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  469. Howe A. The mammalian pars intermedia: a review of its structure and function. J Endocrinol. 1973;59(2):385–409. Epub 1973/11/01.

    Article  CAS  PubMed  Google Scholar 

  470. Wood S, Loudon A. The pars tuberalis: the site of the circannual clock in mammals? Gen Comp Endocrinol. 2018;258:222–35. Epub 2017/07/04.

    Article  CAS  PubMed  Google Scholar 

  471. Korf HW. Leopoldina symposium “seasonal rhythms”, Leuven Belgium, 25. 8. 2016. Gen Comp Endocrinol. 2018;258:213–4. Epub 2017/12/06.

    Article  CAS  PubMed  Google Scholar 

  472. Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol. 2018;258:236–43. Epub 2017/05/18.

    Article  CAS  PubMed  Google Scholar 

  473. Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol. 2018;258:215–21. Epub 2017/05/24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Nam Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, T.N., Pagan, M.S., Uwaifo, G.I. (2021). Neuroendocrinology of the Hypothalamus and Pituitary Axes. In: Uwaifo, G.I. (eds) The Human Hypothalamus. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-62187-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62187-2_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62186-5

  • Online ISBN: 978-3-030-62187-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics