Skip to main content

Hypothalamic Obesity and Wasting Syndromes

  • Chapter
  • First Online:
The Human Hypothalamus

Part of the book series: Contemporary Endocrinology ((COE))

  • 941 Accesses

Abstract

Since the early animal lesional and electric brain stimulation experiments of Hetherington and Ranson, it has been appreciated that lesions in certain parts of the hypothalamus can induce profound phenotypes of morbid obesity or dramatic wasting. These and other findings led to the postulation of hypothalamic “satiety” and “feeding” centers. Subsequent clinical observations in humans including characterization of children with morbid obesity associated with entities such as the Prader-Willi and Frohlich syndromes as well as Simmonds’ cachexia demonstrated that similar hypothalamic dysfunction phenotypes existed in human hypothalamic disease. The discovery of leptin and the subsequent better characterization of the hypothalamic basis for modulation of satiety, hunger, and energy balance as well as the discovery of various adipo- and enterocytokines with central hypothalamic modulatory effects crystallized hypothalamic obesity and wasting as distinct and important clinical entities. This manuscript seeks to provide a comprehensive overview of the causes, presentation, and basic pathophysiology of these two disparate but functionally related clinical syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References/Bibliography

  1. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78(2):149–72.

    Article  Google Scholar 

  2. Reeves AG, Plum F. Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch Neurol. 1969;20(6):616–24. Epub 1969/06/01.

    Article  CAS  PubMed  Google Scholar 

  3. Babinski J. Tumeur du corps pituitarie sans acromegalic et avec arret de development des organes genitaux. Rev Neurol. 1900;8:531–3.

    Google Scholar 

  4. Bruch H. The Frohlich Syndrome; report of the original case. Am J Dis Child. 1939;58:1281–9.

    Article  Google Scholar 

  5. Frohlich A. Ein fall von tumor der hypophysis cerebri ohne akromegalie. Wien Klin Rdsch. 1901;15:883–6.

    Google Scholar 

  6. Smith P. The disabilities caused by hypophysectomy and their repair. The tuberal (hypothalamic) syndrome in the rat. JAMA. 1927;88:159–61.

    Google Scholar 

  7. Doane JC, Blumberg N, Teplick G. Simmonds cachexia. Endocrinology. 1940;27(5):766–75.

    Article  CAS  Google Scholar 

  8. Escamilla RF, Lisser H. Simmonds’ disease (Hypophyseal cachexia): clinical report of several cases with discussion of diagnosis and treatment. Calif West Med. 1938;48(5):343–8. Epub 1938/05/01.

    CAS  Google Scholar 

  9. Silver S. Simmonds’ disease. Arch Intern Med. 1933;51:175.

    Article  Google Scholar 

  10. Simmonds M. Ueber Hypophysisschwund mit todlichem Ausgang. Dtsch Med Wochenschr. 1914;40:1914.

    Article  Google Scholar 

  11. Summers VK. The diagnosis and treatment of Simmonds’ disease. Postgrad Med J. 1947;23(263):441–3. Epub 1947/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farber JE. Simmond’s disease (pituitary cachexia); report of a case. Ann Intern Med. 1940;13(11):2171–7.

    Article  Google Scholar 

  13. Forssman H, Hagberg B. Prader-Willi Syndrome in boy of ten with prediabetes. Acta Paediatr. 1964;53:70–8. Epub 1964/01/01.

    Article  CAS  Google Scholar 

  14. Hoefnagel D, Costello PJ, Hatoum K. Prader--Willi syndrome. J Ment Defic Res. 1967;11(1):1–11. Epub 1967/03/01.

    CAS  PubMed  Google Scholar 

  15. Juul J, Dupont A. Prader-Willi syndrome. J Ment Defic Res. 1967;11(1):12–22. Epub 1967/03/01.

    CAS  PubMed  Google Scholar 

  16. Fournier A, Pauli A, Cecile JP, Cousin J, Decherf A. Craniopharyngioma having the appearance of an isolated obesity. J Sci Med Lille. 1968;86(3):171–5. Epub 1968/03/01. Craniopharyngiome se presentant sous l’aspect d’une obesite isolee.

    CAS  PubMed  Google Scholar 

  17. Klotz HP, Raymond JP, Beaufils F, Guiot G. Adipsia and Korsakoff’s syndrome following hypothalamo-hypophyseal surgery for craniopharyngioma. Postoperative obesity and femoral osteonecrosis. Ann Endocrinol. 1973;34(2):158–63. Epub 1973/03/01. Adipsie et syndrome de Korsakoff apres intervention hypothalamonhypophysaire pour craniopharyngiome. Obesite et osteonecrose femorale post-operatoire.

    CAS  Google Scholar 

  18. Weill J, Bernfeld J. Hypothalamic obesity after surgery of the pituitary gland. Bull Mem Soc Med Hop Paris. 1952;68(18–19):631–4. Epub 1952/05/23. Obesite hypothalamique apres intervention hypophysaire.

    CAS  PubMed  Google Scholar 

  19. Bray GA, York DA. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev. 1979;59(3):719–809. Epub 1979/07/01.

    Article  CAS  PubMed  Google Scholar 

  20. Frohman LA, Bernardis LL, Schnatz JD, Burek L. Plasma insulin and triglyceride levels after hypothalamic lesions in weanling rats. Am J Physiol. 1969;216(6):1496–501. Epub 1969/06/01.

    Article  CAS  PubMed  Google Scholar 

  21. Han PW, Frohman LA. Hyperinsulinemia in tube-fed hypophysectomized rats bearing hypothalamic lesions. Am J Physiol. 1970;219(6):1632–6. Epub 1970/12/01.

    Article  CAS  PubMed  Google Scholar 

  22. King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006;87(2):221–44. Epub 2006/01/18.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32. Epub 1994/12/01.

    Article  CAS  PubMed  Google Scholar 

  24. Daousi C, Dunn AJ, Foy PM, MacFarlane IA, Pinkney JH. Endocrine and neuroanatomic features associated with weight gain and obesity in adult patients with hypothalamic damage. Am J Med. 2005;118(1):45–50. Epub 2005/01/11.

    Article  CAS  PubMed  Google Scholar 

  25. de Vile CJ, Grant DB, Hayward RD, Kendall BE, Neville BG, Stanhope R. Obesity in childhood craniopharyngioma: relation to post-operative hypothalamic damage shown by magnetic resonance imaging. J Clin Endocrinol Metab. 1996;81(7):2734–7. Epub 1996/07/01.

    PubMed  Google Scholar 

  26. Godlewski G. Simmond’s cachexia. J Med Chir Prat. 1950;121(6):118–29. Epub 1950/06/01. La cachexie de Simmonds.

    CAS  PubMed  Google Scholar 

  27. Grossberg AJ, Scarlett JM, Marks DL. Hypothalamic mechanisms in cachexia. Physiol Behav. 2010;100(5):478–89. Epub 2010/03/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Packer RJ. Rare disease database; (NORD); diencephalic syndrome. Bethesda, Maryland; 2019. Cited 15 Sept 2019.

    Google Scholar 

  29. Babcock Gilbert S, Roth LW. Hypothalamic obesity. Minerva Endocrinol. 2015;40(1):61–70. Epub 2014/11/06.

    CAS  PubMed  Google Scholar 

  30. Bereket A, Kiess W, Lustig RH, Muller HL, Goldstone AP, Weiss R, et al. Hypothalamic obesity in children. Obes Rev. 2012;13(9):780–98. Epub 2012/05/15.

    Article  CAS  PubMed  Google Scholar 

  31. Hochberg I, Hochberg Z. Expanding the definition of hypothalamic obesity. Obes Rev. 2010;11(10):709–21. Epub 2010/03/18.

    Article  CAS  PubMed  Google Scholar 

  32. Hochberg I, Hochberg Z. Hypothalamic obesity. Endocr Dev. 2010;17:185–96. Epub 2009/12/04.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JH, Choi JH. Pathophysiology and clinical characteristics of hypothalamic obesity in children and adolescents. Ann Pediatr Endocrinol Metab. 2013;18(4):161–7. Epub 2014/06/07.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bray GA, Gallagher TF Jr. Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of the literature. Medicine. 1975;54(4):301–30. Epub 1975/07/11.

    Article  CAS  PubMed  Google Scholar 

  35. Uwaifo GI. Hypothalamic dysfunction syndrome; wasting vs obesity; a systematic review; T-P 3079. Obesity Week. Las Vegas, Nevada; 2019.

    Google Scholar 

  36. Antal-Zimanyi I, Khawaja X. The role of melanin-concentrating hormone in energy homeostasis and mood disorders. J Mol Neurosci. 2009;39(1-2):86–98. Epub 2009/05/07.

    Article  CAS  PubMed  Google Scholar 

  37. Berthoud HR, Munzberg H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav. 2011;104(1):29–39. Epub 2011/05/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brooks CM. The history of thought concerning the hypothalamus and its functions. Brain Res Bull. 1988;20(6):657–67. Epub 1988/06/01.

    Article  CAS  PubMed  Google Scholar 

  39. Denton DA, McKinley MJ, Weisinger RS. Hypothalamic integration of body fluid regulation. Proc Natl Acad Sci U S A. 1996;93(14):7397–404. Epub 1996/07/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. George JT, Seminara SB. Kisspeptin and the hypothalamic control of reproduction: lessons from the human. Endocrinology. 2012;153(11):5130–6. Epub 2012/09/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lenard NR, Berthoud HR. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity. 2008;16(Suppl 3):S11–22. Epub 2009/02/20.

    Article  CAS  PubMed  Google Scholar 

  42. Rinaman L. Visceral sensory inputs to the endocrine hypothalamus. Front Neuroendocrinol. 2007;28(1):50–60. Epub 2007/03/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rolls A. Hypothalamic control of sleep in aging. Neuromolecular Med. 2012;14(3):139–53. Epub 2012/03/10.

    Article  CAS  PubMed  Google Scholar 

  44. Xiong F, Zhang L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol. 2013;34(1):27–46. Epub 2012/12/04.

    Article  CAS  PubMed  Google Scholar 

  45. Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. Yale J Biol Med. 1951;24(2):123–40. Epub 1951/11/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951;77(2):323–4. Epub 1951/06/01.

    Article  CAS  PubMed  Google Scholar 

  47. Brobeck JR. Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev. 1946;26(4):541–59. Epub 1946/10/01.

    Article  CAS  PubMed  Google Scholar 

  48. Crowley VE, Yeo GS, O’Rahilly S. Obesity therapy: altering the energy intake-and-expenditure balance sheet. Nat Rev Drug Discov. 2002;1(4):276–86. Epub 2002/07/18.

    Article  CAS  PubMed  Google Scholar 

  49. Myers MG Jr, Olson DP. Central nervous system control of metabolism. Nature. 2012;491(7424):357–63. Epub 2012/11/16.

    Article  CAS  PubMed  Google Scholar 

  50. Timper K, Bruning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017;10(6):679–89. Epub 2017/06/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 2000;21(3):263–307. Epub 2000/07/07.

    Article  CAS  PubMed  Google Scholar 

  52. Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet. 2002;3(8):589–600. Epub 2002/08/03.

    Article  CAS  PubMed  Google Scholar 

  53. Elias CF, Kelly JF, Lee CE, Ahima RS, Drucker DJ, Saper CB, et al. Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol. 2000;423(2):261–81. Epub 2000/06/27.

    Article  CAS  PubMed  Google Scholar 

  54. Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest. 2011;121(6):2087–93. Epub 2011/06/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20(1):68–100. Epub 1999/02/27.

    CAS  PubMed  Google Scholar 

  56. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278(5335):135–8. Epub 1997/10/06.

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71. Epub 2000/04/15.

    Article  CAS  PubMed  Google Scholar 

  58. Yang YK, Ollmann MM, Wilson BD, Dickinson C, Yamada T, Barsh GS, et al. Effects of recombinant agouti-signaling protein on melanocortin action. Mol Endocrinol. 1997;11(3):274–80. Epub 1997/03/01.

    Article  CAS  PubMed  Google Scholar 

  59. Boston BA. The hypothalamic path to obesity. J Pediatr Endocrinol Metab. 2004;17(Suppl 4):1289–95. Epub 2004/10/28.

    CAS  PubMed  Google Scholar 

  60. de Git KC, Adan RA. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev. 2015;16(3):207–24. Epub 2015/01/16.

    Article  PubMed  CAS  Google Scholar 

  61. Dozio E, Ruscica M, Motta M, Magni P. Hypothalamic neuropeptide systems as targets for potential anti-obesity drugs. Mini Rev Med Chem. 2007;7(1):11–9. Epub 2007/02/03.

    Article  CAS  PubMed  Google Scholar 

  62. Mantzoros CS. The role of leptin and hypothalamic neuropeptides in energy homeostasis: update on leptin in obesity. Growth Horm IGF Res. 2001;11 Suppl A:S85–9. Epub 2001/08/31.

    Article  CAS  PubMed  Google Scholar 

  63. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421(6925):856–9. Epub 2003/02/21.

    Article  CAS  PubMed  Google Scholar 

  64. Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci. 2016;73(7):1457–77. Epub 2016/01/21.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao AZ, Huan JN, Gupta S, Pal R, Sahu A. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat Neurosci. 2002;5(8):727–8. Epub 2002/07/09.

    Article  CAS  PubMed  Google Scholar 

  66. Decourt C, Tillet Y, Caraty A, Franceschini I, Briant C. Kisspeptin immunoreactive neurons in the equine hypothalamus Interactions with GnRH neuronal system. J Chem Neuroanat. 2008;36(3-4):131–7. Epub 2008/09/02.

    Article  CAS  PubMed  Google Scholar 

  67. Nijenhuis WA, Oosterom J, Adan RA. AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol. 2001;15(1):164–71. Epub 2001/01/06.

    CAS  PubMed  Google Scholar 

  68. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996;381(6581):415–21. Epub 1996/05/30.

    Article  CAS  PubMed  Google Scholar 

  69. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9. Epub 2000/07/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88(1):131–41. Epub 1997/01/10.

    Article  CAS  PubMed  Google Scholar 

  71. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16(3):303–6. Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  72. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7. Epub 1998/06/10.

    Article  CAS  PubMed  Google Scholar 

  73. Gruenewald DA, Matsumoto AM. Age-related decrease in proopiomelanocortin gene expression in the arcuate nucleus of the male rat brain. Neurobiol Aging. 1991;12(2):113–21. Epub 1991/03/01.

    Article  CAS  PubMed  Google Scholar 

  74. Mobbs CV, Bray GA, Atkinson RL, Bartke A, Finch CE, Maratos-Flier E, et al. Neuroendocrine and pharmacological manipulations to assess how caloric restriction increases life span. J Gerontol A Biol Sci Med Sci. 2001;56 Spec No 1:34–44. Epub 2002/06/29

    Article  CAS  PubMed  Google Scholar 

  75. Marks DL, Ling N, Cone RD. Role of the central melanocortin system in cachexia. Cancer Res. 2001;61(4):1432–8. Epub 2001/03/14.

    CAS  PubMed  Google Scholar 

  76. Wisse BE, Frayo RS, Schwartz MW, Cummings DE. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology. 2001;142(8):3292–301. Epub 2001/07/19.

    Article  CAS  PubMed  Google Scholar 

  77. Grouselle D, Chaillou E, Caraty A, Bluet-Pajot MT, Zizzari P, Tillet Y, et al. Pulsatile cerebrospinal fluid and plasma ghrelin in relation to growth hormone secretion and food intake in the sheep. J Neuroendocrinol. 2008;20(10):1138–46. Epub 2008/08/05.

    Article  CAS  PubMed  Google Scholar 

  78. Niimi M, Takahara J, Sato M, Kawanishi K. Identification of dopamine and growth hormone-releasing factor-containing neurons projecting to the median eminence of the rat by combined retrograde tracing and immunohistochemistry. Neuroendocrinology. 1992;55(1):92–6. Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  79. Sawchenko PE, Swanson LW. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science. 1981;214(4521):685–7. Epub 1981/11/06.

    Article  CAS  PubMed  Google Scholar 

  80. Tschop M, Flora DB, Mayer JP, Heiman ML. Hypophysectomy prevents ghrelin-induced adiposity and increases gastric ghrelin secretion in rats. Obes Res. 2002;10(10):991–9. Epub 2002/10/12.

    Article  PubMed  Google Scholar 

  81. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol. 1998;275(1):R291–9. Epub 1998/08/05.

    CAS  PubMed  Google Scholar 

  82. Haynes WG, Morgan DA, Djalali A, Sivitz WI, Mark AL. Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension. 1999;33(1 Pt 2):542–7. Epub 1999/02/04.

    Article  CAS  PubMed  Google Scholar 

  83. Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature. 2013;503(7474):111–4. Epub 2013/10/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah BP, Vong L, Olson DP, Koda S, Krashes MJ, Ye C, et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc Natl Acad Sci U S A. 2014;111(36):13193–8. Epub 2014/08/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blevins JE, Baskin DG. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 2010;63:133–40. Epub 2009/12/04.

    Article  CAS  PubMed  Google Scholar 

  86. Blevins JE, Morton GJ, Williams DL, Caldwell DW, Bastian LS, Wisse BE, et al. Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R476–84. Epub 2008/12/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blevins JE, Schwartz MW, Baskin DG. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol. 2004;287(1):R87–96. Epub 2004/03/27.

    Article  CAS  PubMed  Google Scholar 

  88. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009;29(26):8302–11. Epub 2009/07/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Singru PS, Wittmann G, Farkas E, Zseli G, Fekete C, Lechan RM. Refeeding-activated glutamatergic neurons in the hypothalamic paraventricular nucleus (PVN) mediate effects of melanocortin signaling in the nucleus tractus solitarius (NTS). Endocrinology. 2012;153(8):3804–14. Epub 2012/06/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74(4-5):703–8. Epub 2002/01/16.

    Article  CAS  PubMed  Google Scholar 

  91. Cechetto DF, Standaert DG, Saper CB. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J Comp Neurol. 1985;240(2):153–60. Epub 1985/10/08.

    Article  CAS  PubMed  Google Scholar 

  92. Saper CB. Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol. 1985;237(1):21–46. Epub 1985/07/01.

    Article  CAS  PubMed  Google Scholar 

  93. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–2. Epub 1996/07/18.

    Article  CAS  PubMed  Google Scholar 

  94. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380(6571):243–7. Epub 1996/03/21.

    Article  CAS  PubMed  Google Scholar 

  95. Sakurai T. Roles of orexins in regulation of feeding and wakefulness. Neuroreport. 2002;13(8):987–95. Epub 2002/06/13.

    Article  CAS  PubMed  Google Scholar 

  96. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396(6712):670–4. Epub 1999/01/01.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu L, Onaka T, Sakurai T, Yada T. Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. Neuroreport. 2002;13(10):1351–3. Epub 2002/08/02.

    Article  CAS  PubMed  Google Scholar 

  98. Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function. Am J Physiol Gastrointest Liver Physiol. 2002;283(2):G465–72. Epub 2002/07/18.

    Article  CAS  PubMed  Google Scholar 

  99. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21(6):1375–85. Epub 1999/01/12.

    Article  CAS  PubMed  Google Scholar 

  100. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37. Epub 2000/06/09.

    Article  CAS  PubMed  Google Scholar 

  101. ter Horst GJ, Luiten PG. The projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res Bull. 1986;16(2):231–48. Epub 1986/02/01.

    Article  PubMed  Google Scholar 

  102. Legradi G, Lechan RM. The arcuate nucleus is the major source for neuropeptide Y-innervation of thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology. 1998;139(7):3262–70. Epub 1998/06/30.

    Article  CAS  PubMed  Google Scholar 

  103. Legradi G, Lechan RM. Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology. 1999;140(8):3643–52. Epub 1999/08/05.

    Article  CAS  PubMed  Google Scholar 

  104. Bellinger LL, Bernardis LL. Suppression of feeding by cholecystokinin but not bombesin is attenuated in dorsomedial hypothalamic nuclei lesioned rats. Peptides. 1984;5(3):547–52. Epub 1984/05/01.

    Article  CAS  PubMed  Google Scholar 

  105. Bellinger LL, Bernardis LL. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav. 2002;76(3):431–42. Epub 2002/07/16.

    Article  CAS  PubMed  Google Scholar 

  106. Fulwiler CE, Saper CB. Cholecystokinin-immunoreactive innervation of the ventromedial hypothalamus in the rat: possible substrate for autonomic regulation of feeding. Neurosci Lett. 1985;53(3):289–96. Epub 1985/02/04.

    Article  CAS  PubMed  Google Scholar 

  107. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology. 2002;143(1):239–46. Epub 2001/12/26.

    Article  CAS  PubMed  Google Scholar 

  108. Al-Barazanji KA, Arch JR, Buckingham RE, Tadayyon M. Central exendin-4 infusion reduces body weight without altering plasma leptin in (fa/fa) Zucker rats. Obes Res. 2000;8(4):317–23. Epub 2000/08/10.

    Article  CAS  PubMed  Google Scholar 

  109. Goldstone AP, Mercer JG, Gunn I, Moar KM, Edwards CM, Rossi M, et al. Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Lett. 1997;415(2):134–8. Epub 1997/11/14.

    Article  CAS  PubMed  Google Scholar 

  110. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403(2):261–80. Epub 1999/01/14.

    Article  CAS  PubMed  Google Scholar 

  111. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72. Epub 1996/01/04.

    Article  CAS  PubMed  Google Scholar 

  112. Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience. 1997;77(1):257–70. Epub 1997/03/01.

    Article  CAS  PubMed  Google Scholar 

  113. McMahon LR, Wellman PJ. PVN infusion of GLP-1-(7-36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am J Physiol. 1998;274(1):R23–9. Epub 1998/02/12.

    CAS  PubMed  Google Scholar 

  114. Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016;73(4):737–55. Epub 2015/11/07.

    Article  CAS  PubMed  Google Scholar 

  115. Naslund E, Hellstrom PM. Appetite signaling: from gut peptides and enteric nerves to brain. Physiol Behav. 2007;92(1-2):256–62. Epub 2007/06/22.

    Article  PubMed  CAS  Google Scholar 

  116. Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp Diabetes Res. 2012;2012:824305. Epub 2012/08/18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Reda TK, Geliebter A, Pi-Sunyer FX. Amylin, food intake, and obesity. Obes Res. 2002;10(10):1087–91. Epub 2002/10/12.

    Article  CAS  PubMed  Google Scholar 

  118. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4. Epub 2002/08/09.

    Article  CAS  PubMed  Google Scholar 

  119. Moran TH, Ameglio PJ, Peyton HJ, Schwartz GJ, McHugh PR. Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol. 1993;265(3 Pt 2):R620–4. Epub 1993/09/01.

    CAS  PubMed  Google Scholar 

  120. Moran TH, Ameglio PJ, Schwartz GJ, Peyton HJ, McHugh PR. Endogenous cholecystokinin in the control of gastric emptying of liquid nutrient loads in rhesus monkeys. Am J Physiol. 1993;265(2 Pt 2):R371–5. Epub 1993/08/01.

    CAS  PubMed  Google Scholar 

  121. Schwartz GJ, Berkow G, McHugh PR, Moran TH. Gastric branch vagotomy blocks nutrient and cholecystokinin-induced suppression of gastric emptying. Am J Physiol. 1993;264(3 Pt 2):R630–7. Epub 1993/03/01.

    CAS  PubMed  Google Scholar 

  122. Schwartz GJ, McHugh PR, Moran TH. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Physiol. 1993;265(4 Pt 2):R872–6. Epub 1993/10/01.

    CAS  PubMed  Google Scholar 

  123. Weatherford SC, Laughton WB, Salabarria J, Danho W, Tilley JW, Netterville LA, et al. CCK satiety is differentially mediated by high- and low-affinity CCK receptors in mice and rats. Am J Physiol. 1993;264(2 Pt 2):R244–9. Epub 1993/02/01.

    CAS  PubMed  Google Scholar 

  124. Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30(12):1729–36. Epub 2006/04/19.

    Article  CAS  Google Scholar 

  125. Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003;124(5):1325–36. Epub 2003/05/06.

    Article  CAS  PubMed  Google Scholar 

  126. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–9. Epub 2001/07/27.

    Article  CAS  PubMed  Google Scholar 

  127. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001;50(11):2438–43. Epub 2001/10/27.

    Article  CAS  PubMed  Google Scholar 

  128. Williams DL, Cummings DE, Grill HJ, Kaplan JM. Meal-related ghrelin suppression requires postgastric feedback. Endocrinology. 2003;144(7):2765–7. Epub 2003/06/18.

    Article  CAS  PubMed  Google Scholar 

  129. Williams DL, Grill HJ, Cummings DE, Kaplan JM. Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology. 2003;144(12):5184–7. Epub 2003/10/04.

    Article  CAS  PubMed  Google Scholar 

  130. Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002;8(7):643–4. Epub 2002/07/02.

    Article  CAS  PubMed  Google Scholar 

  131. Goldstone AP. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab. 2004;15(1):12–20. Epub 2003/12/25.

    Article  CAS  PubMed  Google Scholar 

  132. Goldstone AP, Patterson M, Kalingag N, Ghatei MA, Brynes AE, Bloom SR, et al. Fasting and postprandial hyperghrelinemia in Prader-Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY3-36 deficiency or seen in hypothalamic obesity due to craniopharyngioma. J Clin Endocrinol Metab. 2005;90(5):2681–90. Epub 2005/02/03.

    Article  CAS  PubMed  Google Scholar 

  133. Goldstone AP, Thomas EL, Brynes AE, Castroman G, Edwards R, Ghatei MA, et al. Elevated fasting plasma ghrelin in Prader-Willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance. J Clin Endocrinol Metab. 2004;89(4):1718–26. Epub 2004/04/09.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 2005;310(5750):996–9. Epub 2005/11/15.

    Article  CAS  PubMed  Google Scholar 

  135. Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, et al. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience. 2008;155(1):174–81. Epub 2008/06/25.

    Article  CAS  PubMed  Google Scholar 

  136. Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006;443(7112):709–12. Epub 2006/10/13.

    Article  CAS  Google Scholar 

  137. Price CJ, Samson WK, Ferguson AV. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res. 2008;1230:99–106. Epub 2008/07/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, et al. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology. 2009;150(1):232–8. Epub 2008/09/27.

    Article  CAS  PubMed  Google Scholar 

  139. Gavrieli A, Mantzoros CS. Novel molecules regulating energy homeostasis: physiology and regulation by macronutrient intake and weight loss. Endocrinol Metab. 2016;31(3):361–72. Epub 2016/07/30.

    Article  CAS  Google Scholar 

  140. Heiss CN, Olofsson LE. Gut microbiota-dependent modulation of energy metabolism. J Innate Immun. 2018;10(3):163–71. Epub 2017/11/14.

    Article  CAS  PubMed  Google Scholar 

  141. Kobyliak N, Virchenko O, Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutr J. 2016;15:43. Epub 2016/04/24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lazarevic S, Danic M, Golocorbin-Kon S, Al-Salami H, Mikov M. Semisynthetic bile acids: a new therapeutic option for metabolic syndrome. Pharmacol Res. 2019;146:104333. Epub 2019/06/30.

    Article  CAS  PubMed  Google Scholar 

  143. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology. 2014;146(6):1525–33. Epub 2014/02/25.

    Article  CAS  PubMed  Google Scholar 

  144. Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms. 2019;7(2):41. Epub 2019/02/03.

    Article  CAS  PubMed Central  Google Scholar 

  145. Ringseis R, Gessner DK, Eder K. The gut-liver axis in the control of energy metabolism and food intake in animals. Annu Rev Anim Biosci. 2019;15 (8):295–319. Epub 2019/11/07.

    Google Scholar 

  146. Abraham G, Falcou R, Rozen R, Mandenoff A, Autissier N, Apfelbaum M. The effects of a constant T3 level and thermoneutrality in diet-induced hyperphagia. Horm Metab Res. 1987;19(3):96–100. Epub 1987/03/01.

    Article  CAS  PubMed  Google Scholar 

  147. Coppola A, Liu ZW, Andrews ZB, Paradis E, Roy MC, Friedman JM, et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 2007;5(1):21–33. Epub 2006/12/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S. Hypothalamic neuropeptide Y/Y1 receptor pathway activated by a reduction in circulating leptin, but not by an increase in circulating ghrelin, contributes to hyperphagia associated with triiodothyronine-induced thyrotoxicosis. Neuroendocrinology. 2003;78(6):321–30. Epub 2003/12/23.

    Article  CAS  PubMed  Google Scholar 

  149. Kong WM, Martin NM, Smith KL, Gardiner JV, Connoley IP, Stephens DA, et al. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology. 2004;145(11):5252–8. Epub 2004/08/07.

    Article  CAS  PubMed  Google Scholar 

  150. Luo L, MacLean DB. Effects of thyroid hormone on food intake, hypothalamic Na/K ATPase activity and ATP content. Brain Res. 2003;973(2):233–9. Epub 2003/05/10.

    Article  CAS  PubMed  Google Scholar 

  151. Syed MA, Thompson MP, Pachucki J, Burmeister LA. The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid. 1999;9(5):503–12. Epub 1999/06/12.

    Article  CAS  PubMed  Google Scholar 

  152. Uchida-Kitajima S, Yamauchi T, Takashina Y, Okada-Iwabu M, Iwabu M, Ueki K, et al. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue. FEBS Lett. 2008;582(20):3037–44. Epub 2008/08/05.

    Article  CAS  PubMed  Google Scholar 

  153. Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett. 2008;582(1):74–80. Epub 2007/12/07.

    Article  CAS  PubMed  Google Scholar 

  154. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68. Epub 2007/07/10.

    Article  CAS  PubMed  Google Scholar 

  155. Borowska M, Czarnywojtek A, Sawicka-Gutaj N, Wolinski K, Plazinska MT, Mikolajczak P, et al. The effects of cannabinoids on the endocrine system. Endokrynol Pol. 2018;69(6):705–19. Epub 2019/01/09.

    Article  CAS  PubMed  Google Scholar 

  156. Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr Physiol. 2016;7(1):1–15. Epub 2017/01/31.

    PubMed  PubMed Central  Google Scholar 

  157. Joshi N, Onaivi ES. Endocannabinoid system components: overview and tissue distribution. Adv Exp Med Biol. 2019;1162:1–12. Epub 2019/07/25.

    Article  CAS  PubMed  Google Scholar 

  158. Sharkey KA, Wiley JW. The role of the endocannabinoid system in the brain-gut axis. Gastroenterology. 2016;151(2):252–66. Epub 2016/05/03.

    Article  CAS  PubMed  Google Scholar 

  159. Simon V, Cota D. Mechanisms in endocrinology: endocannabinoids and metabolism: past, present and future. Eur J Endocrinol. 2017;176(6):R309–R24. Epub 2017/03/02.

    Article  PubMed  Google Scholar 

  160. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19(3):833. Epub 2018/03/14.

    Article  PubMed Central  CAS  Google Scholar 

  161. Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology. 2017;124:38–51. Epub 2017/06/06.

    Article  CAS  PubMed  Google Scholar 

  162. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84. Epub 2003/11/05.

    Article  CAS  PubMed  Google Scholar 

  163. Wittmann G, Deli L, Kallo I, Hrabovszky E, Watanabe M, Liposits Z, et al. Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus. J Comp Neurol. 2007;503(2):270–9. Epub 2007/05/12.

    Article  CAS  PubMed  Google Scholar 

  164. Jo YH, Chen YJ, Chua SC Jr, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron. 2005;48(6):1055–66. Epub 2005/12/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One. 2008;3(3):e1797. Epub 2008/03/13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci. 2008;11(9):998–1000. Epub 2009/01/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron. 2011;71(1):142–54. Epub 2011/07/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xu Y, Berglund ED, Sohn JW, Holland WL, Chuang JC, Fukuda M, et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nat Neurosci. 2010;13(12):1457–9. Epub 2010/11/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron. 2006;51(6):811–22. Epub 2006/09/20.

    Article  CAS  PubMed  Google Scholar 

  170. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9. Epub 2009/05/05.

    Article  CAS  PubMed  Google Scholar 

  171. Hoebel BG, Avena NM, Bocarsly ME, Rada P. Natural addiction: a behavioral and circuit model based on sugar addiction in rats. J Addict Med. 2009;3(1):33–41. Epub 2009/03/01.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11. Epub 2002/04/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Reynolds SM, Berridge KC. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci. 2002;22(16):7308–20. Epub 2002/08/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012;16(5):579–87. Epub 2012/11/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312(5775):927–30. Epub 2006/05/13.

    Article  CAS  PubMed  Google Scholar 

  176. Ritter S, Dinh TT, Li AJ. Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiol Behav. 2006;89(4):490–500. Epub 2006/08/05.

    Article  CAS  PubMed  Google Scholar 

  177. Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J, et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem. 2004;279(19):19970–6. Epub 2004/03/19.

    Article  CAS  PubMed  Google Scholar 

  178. Froelich syndrome. 2004 [Cited 2020]. Available from: https://raredisease.org/rare-diseases/froelichs-syndrome/.

  179. Babinski JF. Tumeur du corps pituitarire sans acromegalie et avec arret de developpement des organes genitaux. Rev Neurol. 1900;8:531–5.

    Google Scholar 

  180. Zarate A, Saucedo R. The adiposogenital distrophy or Frohlich syndrome and the beginning of the concept of neuroendocrinology. Gac Med Mex. 2007;143(4):349–50. Epub 2007/11/01. La distrofia adiposo genital o sindrome de Frohlich: su contribucion al establecimiento de la neuroendocrinologia.

    PubMed  Google Scholar 

  181. Abaci A, Catli G, Bayram E, Koroglu T, Olgun HN, Mutafoglu K, et al. A case of rapid-onset obesity with hypothalamic dysfunction, hypoventilation, autonomic dysregulation, and neural crest tumor: ROHHADNET syndrome. Endocr Pract. 2013;19(1):e12–6. Epub 2012/11/29.

    Article  PubMed  Google Scholar 

  182. Bougneres P, Pantalone L, Linglart A, Rothenbuhler A, Le Stunff C. Endocrine manifestations of the rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neural tumor syndrome in childhood. J Clin Endocrinol Metab. 2008;93(10):3971–80. Epub 2008/07/17.

    Article  CAS  PubMed  Google Scholar 

  183. Ibanez-Mico S, Marcos Oltra AM, de Murcia Lemauviel S, Ruiz Pruneda R, Martinez Ferrandez C, Domingo Jimenez R. Rapid-onset obesity with hypothalamic dysregulation, hypoventilation, and autonomic dysregulation (ROHHAD syndrome): a case report and literature review. Neurologia. 2017;32(9):616–22. Epub 2016/06/25. Sindrome ROHHAD (obesidad de rapida progresion, disfuncion hipotalamica, hipoventilacion y disregulacion autonomica). Presentacion de un caso y revision de la literatura.

    CAS  PubMed  Google Scholar 

  184. Ize-Ludlow D, Gray JA, Sperling MA, Berry-Kravis EM, Milunsky JM, Farooqi IS, et al. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation presenting in childhood. Pediatrics. 2007;120(1):e179–88. Epub 2007/07/04.

    Article  PubMed  Google Scholar 

  185. Patwari PP, Rand CM, Berry-Kravis EM, Ize-Ludlow D, Weese-Mayer DE. Monozygotic twins discordant for ROHHAD phenotype. Pediatrics. 2011;128(3):e711–5. Epub 2011/08/03.

    Article  PubMed  Google Scholar 

  186. Patwari PP, Wolfe LF. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation: review and update. Curr Opin Pediatr. 2014;26(4):487–92. Epub 2014/06/11.

    Article  PubMed  Google Scholar 

  187. Sartori S, Priante E, Pettenazzo A, Marson P, Suppiej A, Benini F, et al. Intrathecal synthesis of oligoclonal bands in rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation syndrome: new evidence supporting immunological pathogenesis. J Child Neurol. 2014;29(3):421–5. Epub 2013/01/08.

    Article  PubMed  Google Scholar 

  188. Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33(4):459–61. Epub 2003/03/18.

    Article  CAS  PubMed  Google Scholar 

  189. De Pontual L, Trochet D, Caillat-Zucman S, Abou Shenab OA, Bougneres P, Crow Y, et al. Delineation of late onset hypoventilation associated with hypothalamic dysfunction syndrome. Pediatr Res. 2008;64(6):689–94. Epub 2008/08/02.

    Article  PubMed  Google Scholar 

  190. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME, et al. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet A. 2003;123A(3):267–78. Epub 2003/11/11.

    Article  PubMed  Google Scholar 

  191. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116(12):3229–39. Epub 2006/10/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron. 2006;51(2):239–49. Epub 2006/07/19.

    Article  CAS  PubMed  Google Scholar 

  193. Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH. From the cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci U S A. 2007;104(9):3456–9. Epub 2007/03/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Masaki T, Chiba S, Yasuda T, Noguchi H, Kakuma T, Watanabe T, et al. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes. 2004;53(9):2250–60. Epub 2004/08/28

    Article  CAS  PubMed  Google Scholar 

  195. Zimmermann U, Kraus T, Himmerich H, Schuld A, Pollmacher T. Epidemiology, implications and mechanisms underlying drug-induced weight gain in psychiatric patients. J Psychiatr Res. 2003;37(3):193–220. Epub 2003/03/26.

    Article  PubMed  Google Scholar 

  196. Bray GA, Ryan DH. Medical therapy for the patient with obesity. Circulation. 2012;125(13):1695–703. Epub 2012/04/05.

    Article  PubMed  Google Scholar 

  197. Tsai AG, Wadden TA. In the clinic: obesity. Ann Intern Med. 2013;159(5):ITC3-1–ITC3-15; quiz ITC3-6. Epub 2013/09/13.

    Article  Google Scholar 

  198. Fava M, Judge R, Hoog SL, Nilsson ME, Koke SC. Fluoxetine versus sertraline and paroxetine in major depressive disorder: changes in weight with long-term treatment. J Clin Psychiatry. 2000;61(11):863–7. Epub 2000/12/06.

    Article  CAS  PubMed  Google Scholar 

  199. Leslie WS, Hankey CR, Lean ME. Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. QJM. 2007;100(7):395–404. Epub 2007/06/15.

    Article  CAS  PubMed  Google Scholar 

  200. DeVile CJ, Grant DB, Hayward RD, Stanhope R. Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child. 1996;75(2):108–14. Epub 1996/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 1999;36(6):437–46. Epub 2000/06/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hinney A, Volckmar AL, Antel J. Genes and the hypothalamic control of metabolism in humans. Best Pract Res Clin Endocrinol Metab. 2014;28(5):635–47. Epub 2014/09/27.

    Article  CAS  PubMed  Google Scholar 

  203. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392(6674):398–401. Epub 1998/04/16.

    Article  CAS  PubMed  Google Scholar 

  204. Farooqi IS, O’Rahilly S. Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr. 2009;89(3):980S–4S. Epub 2009/02/13.

    Article  CAS  PubMed  Google Scholar 

  205. Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol. 2010;31(3):377–93. Epub 2010/07/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8. Epub 1997/06/26.

    Article  CAS  PubMed  Google Scholar 

  207. Dubern B, Clement K. Leptin and leptin receptor-related monogenic obesity. Biochimie. 2012;94(10):2111–5. Epub 2012/05/26.

    Article  CAS  PubMed  Google Scholar 

  208. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84. Epub 1999/09/16.

    Article  CAS  PubMed  Google Scholar 

  209. Karvonen MK, Pesonen U, Heinonen P, Laakso M, Rissanen A, Naukkarinen H, et al. Identification of new sequence variants in the leptin gene. J Clin Endocrinol Metab. 1998;83(9):3239–42. Epub 1998/09/24.

    Article  CAS  PubMed  Google Scholar 

  210. Mazen I, El-Gammal M, Abdel-Hamid M, Amr K. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab. 2009;97(4):305–8. Epub 2009/05/12.

    Article  CAS  PubMed  Google Scholar 

  211. Paz-Filho G, Esposito K, Hurwitz B, Sharma A, Dong C, Andreev V, et al. Changes in insulin sensitivity during leptin replacement therapy in leptin-deficient patients. Am J Physiol Endocrinol Metab. 2008;295(6):E1401–8. Epub 2008/10/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Paz-Filho GJ, Ayala A, Esposito K, Erol HK, Delibasi T, Hurwitz BE, et al. Effects of leptin on lipid metabolism. Horm Metab Res. 2008;40(8):572–4. Epub 2008/07/16.

    Article  CAS  PubMed  Google Scholar 

  213. Saeed S, Butt TA, Anwer M, Arslan M, Froguel P. High prevalence of leptin and melanocortin-4 receptor gene mutations in children with severe obesity from Pakistani consanguineous families. Mol Genet Metab. 2012;106(1):121–6. Epub 2012/04/03.

    Article  CAS  PubMed  Google Scholar 

  214. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998;18(3):213–5. Epub 1998/03/21.

    Article  CAS  PubMed  Google Scholar 

  215. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F, et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A. 2004;101(13):4531–6. Epub 2004/04/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J. Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A. 2004;101(28):10434–9. Epub 2004/07/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015;372(1):48–54. Epub 2015/01/01.

    Article  PubMed  CAS  Google Scholar 

  218. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736–42. Epub 2003/06/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. 2006;55(12):3366–71. Epub 2006/11/30.

    Article  CAS  PubMed  Google Scholar 

  220. Friedel S, Horro FF, Wermter AK, Geller F, Dempfle A, Reichwald K, et al. Mutation screen of the brain derived neurotrophic factor gene (BDNF): identification of several genetic variants and association studies in patients with obesity, eating disorders, and attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2005;132B(1):96–9. Epub 2004/10/01.

    Article  CAS  PubMed  Google Scholar 

  221. Gray J, Yeo G, Hung C, Keogh J, Clayton P, Banerjee K, et al. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int J Obes (Lond). 2007;31(2):359–64. Epub 2006/05/17.

    Article  CAS  Google Scholar 

  222. Rosas-Vargas H, Martinez-Ezquerro JD, Bienvenu T. Brain-derived neurotrophic factor, food intake regulation, and obesity. Arch Med Res. 2011;42(6):482–94. Epub 2011/09/29.

    Article  CAS  PubMed  Google Scholar 

  223. Hinney A, Hohmann S, Geller F, Vogel C, Hess C, Wermter AK, et al. Melanocortin-4 receptor gene: case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab. 2003;88(9):4258–67. Epub 2003/09/13.

    Article  CAS  PubMed  Google Scholar 

  224. Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999;84(4):1483–6. Epub 1999/04/13.

    Article  CAS  PubMed  Google Scholar 

  225. Rettenbacher E, Tarnow P, Brumm H, Prayer D, Wermter AK, Hebebrand J, et al. A novel non-synonymous mutation in the melanocortin-4 receptor gene (MC4R) in a 2-year-old Austrian girl with extreme obesity. Exp Clin Endocrinol Diabetes. 2007;115(1):7–12. Epub 2007/02/09.

    Article  CAS  PubMed  Google Scholar 

  226. Staubert C, Tarnow P, Brumm H, Pitra C, Gudermann T, Gruters A, et al. Evolutionary aspects in evaluating mutations in the melanocortin 4 receptor. Endocrinology. 2007;148(10):4642–8. Epub 2007/07/14.

    Article  PubMed  CAS  Google Scholar 

  227. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106(2):253–62. Epub 2000/07/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998;20(2):113–4. Epub 1998/10/15.

    Article  CAS  PubMed  Google Scholar 

  229. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20(2):111–2. Epub 1998/10/15.

    Article  CAS  PubMed  Google Scholar 

  230. Hinney A, Bettecken T, Tarnow P, Brumm H, Reichwald K, Lichtner P, et al. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J Clin Endocrinol Metab. 2006;91(5):1761–9. Epub 2006/02/24.

    Article  CAS  PubMed  Google Scholar 

  231. Hinney A, Volckmar AL, Knoll N. Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci. 2013;114:147–91. Epub 2013/01/16.

    Article  CAS  PubMed  Google Scholar 

  232. Jacobson P, Ukkola O, Rankinen T, Snyder EE, Leon AS, Rao DC, et al. Melanocortin 4 receptor sequence variations are seldom a cause of human obesity: the Swedish Obese Subjects, the HERITAGE Family Study, and a Memphis cohort. J Clin Endocrinol Metab. 2002;87(10):4442–6. Epub 2002/10/05.

    Article  CAS  PubMed  Google Scholar 

  233. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75. Epub 2008/05/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lubrano-Berthelier C, Le Stunff C, Bougneres P, Vaisse C. A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J Clin Endocrinol Metab. 2004;89(5):2028–32. Epub 2004/05/06.

    Article  CAS  PubMed  Google Scholar 

  235. Savastano DM, Tanofsky-Kraff M, Han JC, Ning C, Sorg RA, Roza CA, et al. Energy intake and energy expenditure among children with polymorphisms of the melanocortin-3 receptor. Am J Clin Nutr. 2009;90(4):912–20. Epub 2009/08/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Tao YX. Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol Cell Endocrinol. 2005;239(1–2):1–14. Epub 2005/06/25.

    Article  CAS  PubMed  Google Scholar 

  237. Tao YX, Segaloff DL. Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity. Endocrinology. 2003;144(10):4544–51. Epub 2003/09/10.

    Article  CAS  PubMed  Google Scholar 

  238. Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, et al. A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children. Obesity. 2006;14(9):1596–604. Epub 2006/10/13.

    Article  CAS  PubMed  Google Scholar 

  239. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95. Epub 2003/03/21.

    Article  CAS  PubMed  Google Scholar 

  240. Farooqi IS, Yeo GS, O’Rahilly S. Binge eating as a phenotype of melanocortin 4 receptor gene mutations. N Engl J Med. 2003;349(6):606–9; author reply -9. Epub 2003/08/12.

    Article  PubMed  Google Scholar 

  241. Hebebrand J, Geller F, Dempfle A, Heinzel-Gutenbrunner M, Raab M, Gerber G, et al. Binge-eating episodes are not characteristic of carriers of melanocortin-4 receptor gene mutations. Mol Psychiatry. 2004;9(8):796–800. Epub 2004/03/24.

    Article  CAS  PubMed  Google Scholar 

  242. Herpertz S, Siffert W, Hebebrand J. Binge eating as a phenotype of melanocortin 4 receptor gene mutations. N Engl J Med. 2003;349(6):606–9; author reply -9. Epub 2003/08/12.

    Article  PubMed  Google Scholar 

  243. Potoczna N, Branson R, Kral JG, Piec G, Steffen R, Ricklin T, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. 2004;8(8):971–81; discussion 81–2. Epub 2004/12/09.

    Article  PubMed  Google Scholar 

  244. Dempfle A, Hinney A, Heinzel-Gutenbrunner M, Raab M, Geller F, Gudermann T, et al. Large quantitative effect of melanocortin-4 receptor gene mutations on body mass index. J Med Genet. 2004;41(10):795–800. Epub 2004/10/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu Rev Med. 2005;56:443–58. Epub 2005/01/22.

    Article  CAS  PubMed  Google Scholar 

  246. Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341(6143):275–8. Epub 2013/07/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Farooqi S, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. 2006;27(7):710–8. Epub 2006/11/24.

    Article  CAS  PubMed  Google Scholar 

  248. Farooqi IS. The severely obese patient--a genetic work-up. Nat Clin Pract Endocrinol Metab. 2006;2(3):172–7; quiz following 7. Epub 2006/08/26.

    Article  PubMed  Google Scholar 

  249. del Giudice EM, Santoro N, Cirillo G, D’Urso L, Di Toro R, Perrone L. Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family. Diabetes. 2001;50(9):2157–60. Epub 2001/08/28.

    Article  PubMed  Google Scholar 

  250. Farooqi IS, O’Rahilly S. New advances in the genetics of early onset obesity. Int J Obes (Lond). 2005;29(10):1149–52. Epub 2005/09/13.

    Article  CAS  Google Scholar 

  251. Hinney A, Vogel CI, Hebebrand J. From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry. 2010;19(3):297–310. Epub 2010/02/04.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Clement K, Biebermann H, Farooqi IS, Van der Ploeg L, Wolters B, Poitou C, et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat Med. 2018;24(5):551–5. Epub 2018/05/08.

    Article  CAS  PubMed  Google Scholar 

  253. Krude H, Biebermann H, Schnabel D, Tansek MZ, Theunissen P, Mullis PE, et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab. 2003;88(10):4633–40. Epub 2003/10/15.

    Article  CAS  PubMed  Google Scholar 

  254. Kuhnen P, Clement K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6. Epub 2016/07/29.

    Article  PubMed  CAS  Google Scholar 

  255. Ayers KL, Glicksberg BS, Garfield AS, Longerich S, White JA, Yang P, et al. Melanocortin 4 receptor pathway dysfunction in obesity: patient stratification aimed at MC4R agonist treatment. J Clin Endocrinol Metab. 2018;103(7):2601–12. Epub 2018/05/05.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Chen KY, Muniyappa R, Abel BS, Mullins KP, Staker P, Brychta RJ, et al. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J Clin Endocrinol Metab. 2015;100(4):1639–45. Epub 2015/02/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Collet TH, Dubern B, Mokrosinski J, Connors H, Keogh JM, Mendes de Oliveira E, et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol Metab. 2017;6(10):1321–9. Epub 2017/10/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Coulter AA, Rebello CJ, Greenway FL. Centrally acting agents for obesity: past, present, and future. Drugs. 2018;78(11):1113–32. Epub 2018/07/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM, Sinnayah P, et al. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes. 2013;62(2):490–7. Epub 2012/10/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA, et al. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides. 2009;30(10):1892–900. Epub 2009/08/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Muller TD, Tschop MH, O’Rahilly S. Metabolic precision medicines: curing POMC deficiency. Cell Metab. 2016;24(2):194–5. Epub 2016/07/28.

    Article  PubMed  CAS  Google Scholar 

  262. Jackson RS, Creemers JW, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ, et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest. 2003;112(10):1550–60. Epub 2003/11/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Stijnen P, Tuand K, Varga TV, Franks PW, Aertgeerts B, Creemers JW. The association of common variants in PCSK1 with obesity: a HuGE review and meta-analysis. Am J Epidemiol. 2014;180(11):1051–65. Epub 2014/10/31.

    Article  PubMed  Google Scholar 

  264. Borman AD, Pearce LR, Mackay DS, Nagel-Wolfrum K, Davidson AE, Henderson R, et al. A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum Mutat. 2014;35(3):289–93. Epub 2014/01/01.

    Article  CAS  PubMed  Google Scholar 

  265. Coyle CA, Strand SC, Good DJ. Reduced activity without hyperphagia contributes to obesity in Tubby mutant mice. Physiol Behav. 2008;95(1-2):168–75. Epub 2008/07/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nies VJM, Struik D, Wolfs MGM, Rensen SS, Szalowska E, Unmehopa UA, et al. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int J Obes (Lond). 2018;42(3):376–83. Epub 2017/08/31.

    Article  CAS  Google Scholar 

  267. Prada PO, Quaresma PG, Caricilli AM, Santos AC, Guadagnini D, Morari J, et al. Tub has a key role in insulin and leptin signaling and action in vivo in hypothalamic nuclei. Diabetes. 2013;62(1):137–48. Epub 2012/09/12.

    Article  CAS  PubMed  Google Scholar 

  268. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48. Epub 2010/10/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis identifies common variants associated with body mass index in East Asians. Nat Genet. 2012;44(3):307–11. Epub 2012/02/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Doche ME, Bochukova EG, Su HW, Pearce LR, Keogh JM, Henning E, et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Invest. 2012;122(12):4732–6. Epub 2012/11/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Volckmar AL, Putter C, Song JY, Graniger J, Knoll N, Wolters B, et al. Analyses of non-synonymous obesity risk alleles in SH2B1 (rs7498665) and APOB48R (rs180743) in obese children and adolescents undergoing a 1-year lifestyle intervention. Exp Clin Endocrinol Diabetes. 2013;121(6):334–7. Epub 2013/03/23.

    Article  CAS  PubMed  Google Scholar 

  272. Bonnefond A, Raimondo A, Stutzmann F, Ghoussaini M, Ramachandrappa S, Bersten DC, et al. Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features. J Clin Invest. 2013;123(7):3037–41. Epub 2013/06/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Bonaglia MC, Ciccone R, Gimelli G, Gimelli S, Marelli S, Verheij J, et al. Detailed phenotype-genotype study in five patients with chromosome 6q16 deletion: narrowing the critical region for Prader-Willi-like phenotype. Eur J Hum Genet. 2008;16(12):1443–9. Epub 2008/07/24.

    Article  CAS  PubMed  Google Scholar 

  274. Faivre L, Cormier-Daire V, Lapierre JM, Colleaux L, Jacquemont S, Genevieve D, et al. Deletion of the SIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotype. J Med Genet. 2002;39(8):594–6. Epub 2002/08/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Wang JC, Turner L, Lomax B, Eydoux P. A 5-Mb microdeletion at 6q16.1-q16.3 with SIM gene deletion and obesity. Am J Med Genet A. 2008;146A(22):2975–8. Epub 2008/10/18.

    Article  PubMed  Google Scholar 

  276. Ichihara S, Yamada Y. Genetic factors for human obesity. Cell Mol Life Sci. 2008;65(7-8):1086–98. Epub 2007/12/22.

    Article  CAS  PubMed  Google Scholar 

  277. Mutch DM, Clement K. Unraveling the genetics of human obesity. PLoS Genet. 2006;2(12):e188. Epub 2007/01/02.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Geets E, Meuwissen MEC, Van Hul W. Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet. 2019;95(1):23–40. Epub 2018/04/28.

    Article  CAS  PubMed  Google Scholar 

  279. He X, Zhang J. Toward a molecular understanding of pleiotropy. Genetics. 2006;173(4):1885–91. Epub 2006/05/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Chen C, Visootsak J, Dills S, Graham JM Jr. Prader-Willi syndrome: an update and review for the primary pediatrician. Clin Pediatr. 2007;46(7):580–91. Epub 2007/05/25.

    Article  CAS  Google Scholar 

  281. Couper R. Prader-Willi syndrome. J Paediatr Child Health. 1999;35(4):331–4. Epub 1999/08/24.

    Article  CAS  PubMed  Google Scholar 

  282. Diene G, Postel-Vinay A, Pinto G, Polak M, Tauber M. The Prader-Willi syndrome. Ann Endocrinol. 2007;68(2-3):129–37. Epub 2007/05/15. Le syndrome de Prader-Willi.

    Article  CAS  Google Scholar 

  283. Parfrey PS, Davidson WS, Green JS. Clinical and genetic epidemiology of inherited renal disease in Newfoundland. Kidney Int. 2002;61(6):1925–34. Epub 2002/05/25.

    Article  PubMed  Google Scholar 

  284. Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402. Epub 1993/02/01.

    Article  CAS  PubMed  Google Scholar 

  285. Rosenfeld JA, Amrom D, Andermann E, Andermann F, Veilleux M, Curry C, et al. Genotype-phenotype correlation in interstitial 6q deletions: a report of 12 new cases. Neurogenetics. 2012;13(1):31–47. Epub 2012/01/06.

    Article  PubMed  Google Scholar 

  286. Gunay-Aygun M, Cassidy SB, Nicholls RD. Prader-Willi and other syndromes associated with obesity and mental retardation. Behav Genet. 1997;27(4):307–24. Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  287. M’Hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of bardet-biedl syndrome. Mol Syndromol. 2014;5(2):51–6. Epub 2014/04/10.

    Article  PubMed  CAS  Google Scholar 

  288. Braun JJ, Noblet V, Durand M, Scheidecker S, Zinetti-Bertschy A, Foucher J, et al. Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome. Clin Genet. 2014;86(6):521–9. Epub 2014/04/02.

    Article  CAS  PubMed  Google Scholar 

  289. Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet. 2016;90(1):3–15. Epub 2016/01/15.

    Article  CAS  PubMed  Google Scholar 

  290. Suspitsin EN, Imyanitov EN. Bardet-Biedl Syndrome. Mol Syndromol. 2016;7(2):62–71. Epub 2016/07/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Han JC. Rare syndromes and common variants of the brain-derived neurotrophic factor gene in human obesity. Prog Mol Biol Transl Sci. 2016;140:75–95. Epub 2016/06/12.

    Article  CAS  PubMed  Google Scholar 

  292. Miller RW, Fraumeni JF Jr, Manning MD. Association of Wilms’s tumor with aniridia, hemihypertrophy and other congenital malformations. N Engl J Med. 1964;270:922–7. Epub 1964/04/30.

    Article  CAS  PubMed  Google Scholar 

  293. Orpha.net. WAGR syndrome. 2020 [Cited 6 Feb 2020]. Available from: http://www.orpha.net/consor/cgi-bin/Disease_search_Simple.php?ing=EN&diseaseGroup=WAGR.

  294. Amor DJ. Morbid obesity and hyperphagia in the WAGR syndrome. Clin Dysmorphol. 2002;11(1):73–4. Epub 2002/02/02.

    Article  PubMed  Google Scholar 

  295. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. 2008;359(9):918–27. Epub 2008/08/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Marlin S, Couet D, Lacombe D, Cessans C, Bonneau D. Obesity: a new feature of WAGR (del 11p) syndrome. Clin Dysmorphol. 1994;3(3):255–7. Epub 1994/07/01.

    Article  CAS  PubMed  Google Scholar 

  297. Tiberio G, Digilio MC, Giannotti A. Obesity and WAGR syndrome. Clin Dysmorphol. 2000;9(1):63–4. Epub 2000/01/29.

    Article  CAS  PubMed  Google Scholar 

  298. Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes. 2014;21(1):30–8. Epub 2013/12/11.

    Article  CAS  PubMed  Google Scholar 

  299. Azzi S, Steunou V, Tost J, Rossignol S, Thibaud N, Das Neves C, et al. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome. J Med Genet. 2015;52(1):53–60. Epub 2014/11/15.

    Article  CAS  PubMed  Google Scholar 

  300. Bakker B, Sonneveld LJ, Woltering MC, Bikker H, Kant SG. A girl with Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type 1B due to multiple imprinting defects. J Clin Endocrinol Metab. 2015;100(11):3963–6. Epub 2015/09/15.

    Article  CAS  PubMed  Google Scholar 

  301. Martos-Moreno GA, Serra-Juhe C, Perez-Jurado LA, Argente J. Underdiagnosed Beckwith-Wiedemann syndrome among early onset obese children. Arch Dis Child. 2014;99(10):965–7. Epub 2014/08/03.

    Article  PubMed  Google Scholar 

  302. Sabin MA, Werther GA, Kiess W. Genetics of obesity and overgrowth syndromes. Best Pract Res Clin Endocrinol Metab. 2011;25(1):207–20. Epub 2011/03/15.

    Article  CAS  PubMed  Google Scholar 

  303. Sofos E, Pescosolido MF, Quintos JB, Abuelo D, Gunn S, Hovanes K, et al. A novel familial 11p15.4 microduplication associated with intellectual disability, dysmorphic features, and obesity with involvement of the ZNF214 gene. Am J Med Genet A. 2012;158A(1):50–8. Epub 2011/11/05.

    Article  PubMed  CAS  Google Scholar 

  304. Alstrom CH, Hallgren B, Nilsson LB, Asander H. Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness: a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: a clinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr Neurol Scand Suppl. 1959;129:1–35. Epub 1959/01/01.

    CAS  PubMed  Google Scholar 

  305. Alvarez-Satta M, Castro-Sanchez S, Valverde D. Alstrom syndrome: current perspectives. Appl Clin Genet. 2015;8:171–9. Epub 2015/08/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Orpha.net. Alstrom syndrome. 2020 [Cited 6 Feb 2020]. Available from: http://orpha.net/consor/cgi-bin/Disease_Search_Simple.php?Ing=EN&diseaseGroup=Alstrom.

  307. Bachmann-Gagescu R, Mefford HC, Cowan C, Glew GM, Hing AV, Wallace S, et al. Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genet Med. 2010;12(10):641–7. Epub 2010/09/03.

    Article  PubMed  Google Scholar 

  308. Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17(4):628–38. Epub 2007/12/25.

    Article  CAS  PubMed  Google Scholar 

  309. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358(7):667–75. Epub 2008/01/11.

    Article  CAS  PubMed  Google Scholar 

  310. Rosenfeld JA, Coppinger J, Bejjani BA, Girirajan S, Eichler EE, Shaffer LG, et al. Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications. J Neurodev Disord. 2010;2(1):26–38. Epub 2010/03/01.

    Article  PubMed  Google Scholar 

  311. Steinman KJ, Spence SJ, Ramocki MB, Proud MB, Kessler SK, Marco EJ, et al. 16p11.2 deletion and duplication: characterizing neurologic phenotypes in a large clinically ascertained cohort. Am J Med Genet A. 2016;170(11):2943–55. Epub 2016/07/14.

    Article  CAS  PubMed  Google Scholar 

  312. Ballif BC, Hornor SA, Jenkins E, Madan-Khetarpal S, Surti U, Jackson KE, et al. Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nat Genet. 2007;39(9):1071–3. Epub 2007/08/21.

    Article  CAS  PubMed  Google Scholar 

  313. Bochukova EG, Huang N, Keogh J, Henning E, Purmann C, Blaszczyk K, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature. 2010;463(7281):666–70. Epub 2009/12/08.

    Article  CAS  PubMed  Google Scholar 

  314. D’Angelo CS, Koiffmann CP. Copy number variants in obesity-related syndromes: review and perspectives on novel molecular approaches. J Obes. 2012;2012:845480. Epub 2013/01/15.

    PubMed  PubMed Central  Google Scholar 

  315. Hanson E, Nasir RH, Fong A, Lian A, Hundley R, Shen Y, et al. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. J Dev Behav Pediatr. 2010;31(8):649–57. Epub 2010/07/09.

    Article  PubMed  Google Scholar 

  316. Sampson MG, Coughlin CR 2nd, Kaplan P, Conlin LK, Meyers KE, Zackai EH, et al. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am J Med Genet A. 2010;152A(10):2618–22. Epub 2010/08/28.

    Article  CAS  PubMed  Google Scholar 

  317. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J, et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature. 2010;463(7281):671–5. Epub 2010/02/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. McLennan Y, Polussa J, Tassone F, Hagerman R. Fragile x syndrome. Curr Genomics. 2011;12(3):216–24. Epub 2011/11/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Berry-Kravis E, Raspa M, Loggin-Hester L, Bishop E, Holiday D, Bailey DB. Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil. 2010;115(6):461–72. Epub 2010/10/16.

    Article  PubMed  Google Scholar 

  320. de Vries BB, Fryns JP, Butler MG, Canziani F, Wesby-van Swaay E, van Hemel JO, et al. Clinical and molecular studies in fragile X patients with a Prader-Willi-like phenotype. J Med Genet. 1993;30(9):761–6. Epub 1993/09/01.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Raspa M, Bailey DB, Bishop E, Holiday D, Olmsted M. Obesity, food selectivity, and physical activity in individuals with fragile X syndrome. Am J Intellect Dev Disabil. 2010;115(6):482–95. Epub 2010/10/16.

    Article  PubMed  Google Scholar 

  322. Martin JP, Bell J. A pedigree of mental defect showing sex-linkage. J Neurol Psychiatry. 1943;6(3-4):154–7. Epub 1943/07/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Sutherland GR, Ashforth PL. X-linked mental retardation with macro-orchidism and the fragile site at Xq 27 or 28. Hum Genet. 1979;48(1):117–20. Epub 1979/04/17.

    Article  CAS  PubMed  Google Scholar 

  324. Turner G, Daniel A, Frost M. X-linked mental retardation, macro-orchidism, and the Xq27 fragile site. J Pediatr. 1980;96(5):837–41. Epub 1980/05/01.

    Article  CAS  PubMed  Google Scholar 

  325. Hinney A, Hebebrand J. Polygenic obesity in humans. Obes Facts. 2008;1(1):35–42. Epub 2008/01/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Inui A, Meguid MM. Cachexia and obesity: two sides of one coin? Curr Opin Clin Nutr Metab Care. 2003;6(4):395–9. Epub 2003/06/14.

    Article  CAS  PubMed  Google Scholar 

  327. Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol. 2016;54:42–52. Epub 2015/11/07.

    Article  PubMed  Google Scholar 

  328. Mendes MC, Pimentel GD, Costa FO, Carvalheira JB. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol. 2015;226(3):R29–43. Epub 2015/06/27.

    Article  CAS  PubMed  Google Scholar 

  329. Debonis D, Meguid MM, Laviano A, Yang ZJ, Gleason JR. Temporal changes in meal number and meal size relationship in response to rHu IL-1 alpha. Neuroreport. 1995;6(13):1752–6. Epub 1995/09/11.

    Article  CAS  PubMed  Google Scholar 

  330. Opara EI, Laviano A, Meguid MM, Yang ZJ. Correlation between food intake and CSF IL-1 alpha in anorectic tumor bearing rats. Neuroreport. 1995;6(5):750–2. Epub 1995/03/27.

    Article  CAS  PubMed  Google Scholar 

  331. Plata-Salaman CR. Central nervous system mechanisms contributing to the cachexia-anorexia syndrome. Nutrition. 2000;16(10):1009–12. Epub 2000/10/31.

    Article  CAS  PubMed  Google Scholar 

  332. Plata-Salaman CR. Ingestive behavior and obesity. Nutrition. 2000;16(10):797–9. Epub 2000/10/31.

    Article  CAS  PubMed  Google Scholar 

  333. Plata-Salaman CR, Sonti G, Borkoski JP, Wilson CD, French-Mullen JM. Anorexia induced by chronic central administration of cytokines at estimated pathophysiological concentrations. Physiol Behav. 1996;60(3):867–75. Epub 1996/09/01.

    Article  CAS  PubMed  Google Scholar 

  334. Sonti G, Ilyin SE, Plata-Salaman CR. Anorexia induced by cytokine interactions at pathophysiological concentrations. Am J Physiol. 1996;270(6 Pt 2):R1394–402. Epub 1996/06/01.

    CAS  PubMed  Google Scholar 

  335. Sonti G, Ilyin SE, Plata-Salaman CR. Neuropeptide Y blocks and reverses interleukin-1 beta-induced anorexia in rats. Peptides. 1996;17(3):517–20. Epub 1996/01/01.

    Article  CAS  PubMed  Google Scholar 

  336. Sternberg EM. Neural-immune interactions in health and disease. J Clin Invest. 1997;100(11):2641–7. Epub 1998/02/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Molfino A, Gioia G, Rossi Fanelli F, Laviano A. Contribution of neuroinflammation to the pathogenesis of cancer cachexia. Mediators Inflamm. 2015;2015:801685. Epub 2015/10/28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  338. Laviano A, Seelaender M, Rianda S, Silverio R, Rossi FF. Neuroinflammation: a contributing factor to the pathogenesis of cancer cachexia. Crit Rev Oncog. 2012;17(3):247–51. Epub 2012/07/27.

    Article  PubMed  Google Scholar 

  339. Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Rossi Fanelli F, et al. Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab. 2008;295(5):E1000–8. Epub 2008/08/21.

    Article  CAS  PubMed  Google Scholar 

  340. Laviano A, Inui A, Meguid MM, Molfino A, Conte C, Rossi FF. NPY and brain monoamines in the pathogenesis of cancer anorexia. Nutrition. 2008;24(9):802–5. Epub 2008/07/30.

    Article  CAS  PubMed  Google Scholar 

  341. Johns N, Stephens NA, Fearon KC. Muscle wasting in cancer. Int J Biochem Cell Biol. 2013;45(10):2215–29. Epub 2013/06/19.

    Article  CAS  PubMed  Google Scholar 

  342. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci U S A. 1994;91(19):8817–21. Epub 1994/09/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410. Epub 2009/04/04.

    Article  CAS  PubMed  Google Scholar 

  344. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43. Epub 2010/08/21.

    Article  CAS  PubMed  Google Scholar 

  345. Bao Y, Bing C, Hunter L, Jenkins JR, Wabitsch M, Trayhurn P. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes. FEBS Lett. 2005;579(1):41–7. Epub 2004/12/29.

    Article  CAS  PubMed  Google Scholar 

  346. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci U S A. 2004;101(8):2500–5. Epub 2004/02/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Bing C, Mracek T, Gao D, Trayhurn P. Zinc-alpha2-glycoprotein: an adipokine modulator of body fat mass? Int J Obes (Lond). 2010;34(11):1559–65. Epub 2010/06/02.

    Article  CAS  Google Scholar 

  348. Bing C, Russell ST, Beckett EE, Collins P, Taylor S, Barraclough R, et al. Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor. Br J Cancer. 2002;86(4):612–8. Epub 2002/03/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Bing C, Taylor S, Tisdale MJ, Williams G. Cachexia in MAC16 adenocarcinoma: suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y. J Neurochem. 2001;79(5):1004–12. Epub 2001/12/12.

    Article  CAS  PubMed  Google Scholar 

  350. Collins P, Bing C, McCulloch P, Williams G. Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans. Br J Cancer. 2002;86(3):372–5. Epub 2002/03/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Masuno H, Yamasaki N, Okuda H. Purification and characterization of a lipolytic factor (toxohormone-L) from cell-free fluid of ascites sarcoma 180. Cancer Res. 1981;41(1):284–8. Epub 1981/01/01.

    CAS  PubMed  Google Scholar 

  352. Masuno H, Yoshimura H, Ogawa N, Okuda H. Isolation of a lipolytic factor (toxohormone-L) from ascites fluid of patients with hepatoma and its effect on feeding behavior. Eur J Cancer Clin Oncol. 1984;20(9):1177–85. Epub 1984/09/01.

    Article  CAS  PubMed  Google Scholar 

  353. McDevitt TM, Todorov PT, Beck SA, Khan SH, Tisdale MJ. Purification and characterization of a lipid-mobilizing factor associated with cachexia-inducing tumors in mice and humans. Cancer Res. 1995;55(7):1458–63. Epub 1995/04/01.

    CAS  PubMed  Google Scholar 

  354. Taylor DD, Gercel-Taylor C, Jenis LG, Devereux DF. Identification of a human tumor-derived lipolysis-promoting factor. Cancer Res. 1992;52(4):829–34. Epub 1992/02/15.

    CAS  PubMed  Google Scholar 

  355. DeBoer MD. Update on melanocortin interventions for cachexia: progress toward clinical application. Nutrition. 2010;26(2):146–51. Epub 2009/12/17.

    Article  CAS  PubMed  Google Scholar 

  356. Goodfellow VS, Saunders J. The melanocortin system and its role in obesity and cachexia. Curr Top Med Chem. 2003;3(8):855–83. Epub 2003/04/08.

    Article  CAS  PubMed  Google Scholar 

  357. van Norren K, Dwarkasing JT, Witkamp RF. The role of hypothalamic inflammation, the hypothalamic-pituitary-adrenal axis and serotonin in the cancer anorexia-cachexia syndrome. Curr Opin Clin Nutr Metab Care. 2017;20(5):396–401. Epub 2017/07/15.

    Article  PubMed  CAS  Google Scholar 

  358. Osei-Hyiaman D. Endocannabinoid system in cancer cachexia. Curr Opin Clin Nutr Metab Care. 2007;10(4):443–8. Epub 2007/06/15.

    Article  CAS  PubMed  Google Scholar 

  359. Astudillo SS, Antoni HP. Hypophysial cachexia. Rev Fac Cienc Med Univ Nac Cordoba. 1951;9(3):359–73. Epub 1951/05/01. Una caquexia hipofisiaria.

    CAS  PubMed  Google Scholar 

  360. Berkman JM. Anorexia nervosa, anterior-pituitary insufficiency, Simmonds’ cachexia, and Sheehan’s disease, including some observations on disturbances in water metabolism associated with starvation. Postgrad Med. 1948;3(4):237–46. Epub 1948/04/01.

    Article  CAS  PubMed  Google Scholar 

  361. Caldera R, Rossier A. Cachexia in a young child caused by tumor of the hypothalamus. Ann Pediatr. 1962;9:613–6. Epub 1962/12/02.

    CAS  Google Scholar 

  362. Ciccarelli EC, Huttenlocher PR. Diencephalic tumor. A cause of infantile nystagmus and cachexia. Arch Ophthalmol. 1967;78(3):350–3. Epub 1967/09/01.

    Article  CAS  PubMed  Google Scholar 

  363. Czochanska-Kruk J. A case of injury of the hypothalamic region as a cause of severe emaciation. Pediatr Pol. 1962;37:735–9. Epub 1962/07/01.

    CAS  PubMed  Google Scholar 

  364. De Vink LP, De Vaal OM. Anorexia nervosa, hypophyseal cachexia and atrophy of the system. Ned Tijdschr Geneeskd. 1949;93(40):3410–6, 2 pl. Epub 1949/10/01. Nerveuze anorexie, hypophysaire cachexie en atrophie van het pileuze systeem.

    Google Scholar 

  365. Dechaume J, Schott B, Bourrat C. Boulimia with obesity, anorexia with emaciation, in 2 patients with calcifications of probable hypothalamic localization. Lyon Med. 1962;94:811–32. Epub 1962/04/01.

    CAS  PubMed  Google Scholar 

  366. Decourt J, Cambier J. Typical and pure form of late panhypopituitarism (Simmonds’ hypophysial cachexia) existing for twenty-seven years, without emaciation. Bull Mem Soc Med Hop Paris. 1952;68(3-4):204–9. Epub 1952/01/25. Forme typique et pure de pan-hypopituitarisme tardif (cachexie hypophysaire de Simmonds) installe deputs vingt-sept ans, sans amaigrissement.

    CAS  PubMed  Google Scholar 

  367. Decourt J, Doumic JM, Cambier J. Hypogonadotrophic eunochoidism. Bull Mem Soc Med Hop Paris. 1952;68(20-21):685–91. Epub 1952/06/06. L’eunuchoidisme hypogonadotrophique.

    CAS  PubMed  Google Scholar 

  368. Diamond EF, Averick N. Marasmus and the diencephalic syndrome. Arch Neurol. 1966;14(3):270–2. Epub 1966/03/01.

    Article  CAS  PubMed  Google Scholar 

  369. Heim G. Tumor of the craniopharyngeal canal (Erdheim’s tumor) manifested by Simmonds’ cachexia. Zentralbl Allg Pathol. 1951;87(9):335–6. Epub 1951/07/01. Hypophysengangeschwulst (Erdheimscher Tumor) und hierdurch bedingte Simmondsche Kachexie.

    CAS  PubMed  Google Scholar 

  370. Hemphill RE. Pituitary cachexia treated with corticotropic hormone. Bristol Med Chir J. 1946;63(227):116–8. Epub 1946/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  371. Iurasog G, Mihaila M. Hypothalamic syndromes following poliomyelitis. J Med Lyon. 1964;45:1887–911. Epub 1964/11/05. Syndromes hypothalamiques post-poliomy’elitiqes.

    CAS  PubMed  Google Scholar 

  372. Iurasog G, Mihaila M. Post-poliomyelitis hypothalamic syndromes. Stud Cercet Inframicrobiol. 1964;15:359–76. Epub 1964/01/01. Sindroame hipotalamice postpoliomielitice.

    CAS  PubMed  Google Scholar 

  373. Kamalian N, Keesey RE, ZuRhein GM. Lateral hypothalamic demyelination and cachexia in a case of “malignant” multiple sclerosis. Neurology. 1975;25(1):25–30. Epub 1975/01/01.

    Article  CAS  PubMed  Google Scholar 

  374. Kestermann E, Strapatsakis M. Clinical contribution to the treatment of hypophyseal cachexia. Med Monatsschr. 1962;16:111–3. Epub 1962/02/01.

    CAS  PubMed  Google Scholar 

  375. Kniazevskaia EG. Recovery from diencephalo-pituitary cachexia. Vopr Okhr Materin Det. 1964;9:85–8. Epub 1964/07/01. Vyzdorovlenie ot di’entsefalo-gipofizarnogo istoshcheniia.

    CAS  PubMed  Google Scholar 

  376. Laterre EC, Crabbe J, Durnez W, Brucher JM. Cachexia, diabetes insipidus concealed by adipsia, hypogonadism and changes of the visual field due to a chronic encephalitic process predominantly hypothalamic. Rev Neurol (Paris). 1969;121(1):31–46. Epub 1969/07/01. Cachexie, diabete insipide masque par adipsie, hypogonadisme et alteration du champ visuel causes par un processus encephalitique chronique a predominance hypothalamique.

    CAS  Google Scholar 

  377. Maiello M, Fusi S, Borghi A. A complex picture of hypothalamic pathology appearing after cranial trauma (amenorrhea, galactorrhea, anorexia-bulimia, muscular hypotrophy, reticular crises. Folia Endocrinol. 1973;26(5):435–8. Epub 1973/10/01. Un complesso quadro di patologia ipotalamica insorto dopo trauma cranico (amenorrea, galattorrea, anoressia-bulimia, ipotrofia muscolare, crisi reticolari.

    Google Scholar 

  378. Malkina MG, Arkhangel’Skii AV. Psychical disorders in cerebro-hypophysial cachexia. Probl Endokrinol Gormonoter. 1956;2(1):3–7. Epub 1956/01/01. K voprosu o psikhicheskikh rasstroistvakh pri tserebral’no-gipofisarnoi kakheksii.

    CAS  PubMed  Google Scholar 

  379. Mecklin B. A case of fatal subarachnoid hemorrhages, congenital aneurysms of the brain, adrenal dysfunction, and pituitary cachexia. N Y State J Med. 1950;50(10):1272–3. Epub 1950/05/15.

    CAS  PubMed  Google Scholar 

  380. Meythaler F, Oswald H. Disorders of diencephalic-hypophysial function. Arztl Forsch. 1957;11(10):I/485–94. Epub 1957/10/10. Uber funktionell bedingte diencephal-hypophysare Storungen.

    Google Scholar 

  381. Noetzel H. A case of Simmond’s cachexia with a new bone formation at the anterior pituitary lobe. Dtsch Z Nervenheilkd. 1958;177(4):370–3. Epub 1958/01/01. Ein Fall von Simmondsscher Kachexie mit Knochenneubildung im Vorderlappen der Hypophyse.

    Article  CAS  PubMed  Google Scholar 

  382. Pelletier A, Blais A, Lemieux L, Drolet C. Hypophysial cachexia; anatomoclinical study. Laval Med. 1953;18(2):181–6. Epub 1953/02/01. Syndrome de cachexie hypophysaire; etude anatomo-clinique.

    CAS  PubMed  Google Scholar 

  383. Poklekowski I. Hypophysial-diencephalic cachexia caused by intracranial trauma. Dtsch Gesundheitsw. 1958;13(50):1638–43. Epub 1958/12/11. Hypophysar-dienzephale Kachexie infolge Schadeltrauma.

    CAS  PubMed  Google Scholar 

  384. Ricci P. Diencephalon-pituitary pathology; anatomical and clinical contribution to the study of pituitary cachexia. Rass Neurol Veg. 1951;9(2-3):149–59. Epub 1951/12/01. Sulla patologia diencefalo-ipofisaria; contributo anatomo-clinico allo studio della cachessia ipofisaria.

    CAS  PubMed  Google Scholar 

  385. Rodda R, Stenhouse JF. An endobronchial chondroma in a cachectic psychotic with hypopituitarism. N Z Med J. 1955;54(301):271–5. Epub 1955/06/01.

    CAS  PubMed  Google Scholar 

  386. Roetzscher K. A case of Simmond’s cachexia in chromophobe adenoma of the anterior pituitary gland of the “fetal type”. Zentralbl Allg Pathol. 1961;102:246–9. Epub 1961/05/31.

    CAS  PubMed  Google Scholar 

  387. Seringe P. Cachexia in infants caused by a tumor of the anterior hypothalamus. Gaz Med Fr. 1966;73(2):221–33. Epub 1966/01/25. Cachexie du nourrisson par tumeur de l’hypothalamus anterieur.

    CAS  PubMed  Google Scholar 

  388. Seringe P, Plainfosse B, Despres P. Infantile cachexia caused by a tumor of the anterior hypothalamus. Bull Mem Soc Med Hop Paris. 1965;116(11):1123–9. Epub 1965/05/21. Cachexie infantile par tumeur de l’hypothalamus anterieur.

    CAS  PubMed  Google Scholar 

  389. Seringe P, Plainfosse B, Hallez J, Birman M. A 2d case of cachexia in a child caused by tumor of the anterior hypothalamus. Case report. Arch Fr Pediatr. 1964;21:1221–2. Epub 1964/12/01. Un second cas de cachexie de l’enfant par tumeur de l’hypothalamus ant’erieur. pr’esentation de malade.

    CAS  PubMed  Google Scholar 

  390. Tangheroni W, Napoleone F, Cao A, Coraddu M. Cachectic diencephalic syndrome caused by an anterior hypothalamic tumor. Description of a new case. Minerva Pediatr. 1967;19(52):2331–5. Epub 1967/12/29. Sindrome diencefalica cachettizzante da tumore dell’ipotalamo anteriore. Descrizione di un nuovo caso.

    CAS  PubMed  Google Scholar 

  391. White WG, Moehlig RC. Differentiation of anorexia nervosa and pituitary cachexia; case report. J Mich State Med Soc. 1950;49(6):665–7. Epub 1950/06/01.

    CAS  PubMed  Google Scholar 

  392. Balcazar-Hernandez L, Vargas-Ortega G, Valverde-Garcia Y, Mendoza-Zubieta V, Gonzalez-Virla B. Anorexia-cachexia syndrome-like hypothalamic neuroendocrine dysfunction in a patient with a papillary craniopharyngioma. Endocrinol Diabetes Metab Case Rep. 2017; 2017:17–0018. https://doi.org/10.1530/EDM-17-0018.

  393. Lagos N, Zanartu J, Lavados J. Observations on some neurologic aspects in hypothalamo-hypophysial syndromes: hypophysial apoplexy, posttraumatic diabetes insipidus, hypophysial cachexia. Rev Neuropsiquiatr. 1965;28(2):109–29. Epub 1965/06/01. Observaciones sobre algunos aspectos neurologicos en los sindromes hipotalamo-hipofisiarios: apoplejia hipofisiaria, diabetes insipida post-traumatica, caquexia hipofisiaria.

    CAS  PubMed  Google Scholar 

  394. Theologides A. Generalized perturbations in host physiology caused by localized tumors. The anorexia-cachexia syndrome: a new hypothesis. Ann N Y Acad Sci. 1974;230:14–22. Epub 1974/01/01.

    Article  CAS  PubMed  Google Scholar 

  395. Vethakkan SR, Venugopal Y, Tan AT, Paramasivam SS, Ratnasingam J, Razak RA, et al. Hypothalamic germinoma masquerading as superior mesenteric artery (SMA) syndrome. Endocr Pract. 2013;19(1):e29–34. Epub 2012/11/29.

    Article  PubMed  Google Scholar 

  396. Sheehan HL. Post-partum necrosis of the anterior pituitary. Trans Edinb Obstet Soc. 1938;58:13–28. Epub 1938/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  397. Critchley M, Russell WR, Zangwill OL. Discussion on parietal lobe syndromes. Proc R Soc Med. 1951;44(4):337–46. Epub 1951/04/01.

    CAS  PubMed  Google Scholar 

  398. Garcia-Bengochea F, Corrigan R, Morgane P, Russell D Jr, Heath RG. Studies on the function of the temporal lobes. I. The section of the fornix. Trans Am Neurol Assoc. 1951;56:238–9. Epub 1951/01/01.

    CAS  PubMed  Google Scholar 

  399. Lennox B, Russell DS. Dystopia of the neurohypophysis; two cases. J Pathol Bacteriol. 1951;63(3):485–90. Epub 1951/07/01.

    Article  CAS  PubMed  Google Scholar 

  400. Russell WR. Disability caused by brain wounds; a review of 1,166 cases. Treat Serv Bull. 1951;6(8):409–19. Epub 1951/09/01.

    CAS  PubMed  Google Scholar 

  401. Russell WR. Disability caused by brain wounds; a review of 1,166 cases. J Neurol Neurosurg Psychiatry. 1951;14(1):35–9. Epub 1951/02/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Gabel BC, Cleary DR, Martin JR, Khan U, Snyder V, Sang UH. Unusual and rare locations for craniopharyngiomas: clinical significance and review of the literature. World Neurosurg. 2017;98:381–7. Epub 2016/12/03.

    Article  PubMed  Google Scholar 

  403. Hoffmann A, Gebhardt U, Sterkenburg AS, Warmuth-Metz M, Muller HL. Diencephalic syndrome in childhood craniopharyngioma--results of German multicenter studies on 485 long-term survivors of childhood craniopharyngioma. J Clin Endocrinol Metab. 2014;99(11):3972–7. Epub 2014/08/01.

    Article  CAS  PubMed  Google Scholar 

  404. Jonklaas J. Atypical presentation of a patient with both kallmann syndrome and a craniopharyngioma: case report and literature review. Endocr Pract. 2005;11(1):30–6. Epub 2005/07/22.

    Article  PubMed  Google Scholar 

  405. Satyarthee GD, Chipde H. Diencephalic syndrome as presentation of giant childhood craniopharyngioma: management review. J Pediatr Neurosci. 2018;13(4):383–7. Epub 2019/04/03.

    Article  PubMed  PubMed Central  Google Scholar 

  406. Klochkova IS, Astaf’eva LI, Konovalov AN, Kadashev BA, Kalinin PL, Sharipov OI, et al. A rare case of diencephalic cachexia in an adult female with cranio-pharyngioma. Zh Vopr Neirokhir Im N N Burdenko. 2017;81(5):84–95. Epub 2017/10/28. Redkii sluchai razvitiia dientsefal’noi kakheksii u vzrosloi zhenshchiny s kraniofaringiomoi.

    Article  CAS  PubMed  Google Scholar 

  407. Hernandez-Estrada RA, Kshettry VR, Vogel AN, Curtis MT, Evans JJ. Cholesterol granulomas presenting as sellar masses: a similar, but clinically distinct entity from craniopharyngioma and Rathke’s cleft cyst. Pituitary. 2017;20(3):325–32. Epub 2016/11/12.

    Article  PubMed  Google Scholar 

  408. La Rocca G, Rigante M, Gessi M, D’Alessandris QG, Auricchio AM, Chiloiro S, et al. Xanthogranuloma of the sellar region: a rare tumor. Case illustration and literature review. J Clin Neurosci. 2019;59:318–24. Epub 2018/10/18.

    Article  PubMed  Google Scholar 

  409. Stival A, Lucchesi M, Farina S, Buccoliero AM, Castiglione F, Genitori L, et al. An infant with hyperalertness, hyperkinesis, and failure to thrive: a rare diencephalic syndrome due to hypothalamic anaplastic astrocytoma. BMC Cancer. 2015;15:616. Epub 2015/09/05.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  410. Amoroso L, Cacchione A, Valentini D, Foco M, Gonfiantini M, Cappelli C, et al. Russell’s syndrome: a case of long-term survival and review of the literature. Clin Ter. 2004;155(6):255–8. Epub 2004/11/25. Sindrome di Russell: descrizione di un caso clinico a lunga sopravvivenza e revisione della letteratura.

    CAS  PubMed  Google Scholar 

  411. Valentini D, Cappelli C, Mizzoni F, Noto C, Toscano D, Foco M, et al. Erdheim-Chester disease: a non-Langerhans cell histiocytosis. A clinical-case and review of the literature. Clin Ter. 2004;155(5):205–8. Epub 2004/09/04. La malattia di Erdheim-Chester una istiocitosi a cellule non Langerhans. Rewiew della letteratura e descrizione di un caso clinico.

    CAS  PubMed  Google Scholar 

  412. Tanabe M, Watanabe T, Hori T. von Recklinghausen’s disease with diencephalic syndrome in an adult. Case report. J Neurosurg. 1994;80(3):556–8. Epub 1994/03/01.

    Article  CAS  PubMed  Google Scholar 

  413. Baba H, Ryu N, Mori K, Yoshimoto M, Yamashita A, Tsuji Y. Hypothalamic glioma with diencephalic syndrome and following precocious puberty--a case report. No To Shinkei. 1989;41(10):1029–35. Epub 1989/10/01.

    CAS  PubMed  Google Scholar 

  414. Fleischman A, Brue C, Poussaint TY, Kieran M, Pomeroy SL, Goumnerova L, et al. Diencephalic syndrome: a cause of failure to thrive and a model of partial growth hormone resistance. Pediatrics. 2005;115(6):e742–8. Epub 2005/06/03.

    Article  PubMed  Google Scholar 

  415. Kim A, Moon JS, Yang HR, Chang JY, Ko JS, Seo JK. Diencephalic syndrome: a frequently neglected cause of failure to thrive in infants. Korean J Pediatr. 2015;58(1):28–32. Epub 2015/03/03.

    Article  PubMed  PubMed Central  Google Scholar 

  416. Wagner LM, Myseros JS, Lukins DE, Willen CM, Packer RJ. Targeted therapy for infants with diencephalic syndrome: a case report and review of management strategies. Pediatr Blood Cancer. 2018;65(5):e26917. Epub 2018/01/26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel I. Uwaifo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uwaifo, G.I. (2021). Hypothalamic Obesity and Wasting Syndromes. In: Uwaifo, G.I. (eds) The Human Hypothalamus. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-62187-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62187-2_12

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62186-5

  • Online ISBN: 978-3-030-62187-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics