Skip to main content

Advanced Ultrasonography Imaging

  • Chapter
  • First Online:
Ultrasonography in Dentomaxillofacial Diagnostics

Abstract

Ultrasound is a method used in medical imaging since the 1950s. It is a noninvasive, relatively cheap imaging method that has important advantages including easy to use and free of ionizing radiation. Technological developments have led to significant improvements in ultrasound imaging over time. Advances in ultrasonography imaging contain improvements in signal processing, imaging methods, and clinical practice.

Extending of the field of view (FOV) with panoramic ultrasonography, using harmonics in ultrasound imaging, integrating scans to produce a compound image, provide different color than gray with chromatic imaging, add new perspectives using volumetric ultrasound, using microbubbles to contrast enhancement, quantifying stiffness of tissue with elastography and portable ultrasound systems have been provided valuable differences in advanced ultrasound imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weng L, Tirumalai AP, Lowery CM, et al. US extended-field-of-view imaging technology. Radiology. 1997;203(3):877–80.

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro RS. Panoramic ultrasound of the thyroid. Thyroid. 2003;13(2):177–81.

    Article  PubMed  Google Scholar 

  3. Rafii-Tari H, Abolmaesumi P, Rohling R. Panorama ultrasound for guiding epidural anesthesia: A feasibility study. In: International Conference on Information Processing in Computer-Assisted Interventions. Berlin: Springer; 2011. p. 179–89.

    Google Scholar 

  4. Powers J, Kremkau F. Medical ultrasound systems. Interface Focus. 2011;1(4):477–89.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O'Brien RT, Holmes SP. Recent advances in ultrasound technology. Clin Tech Small Anim Pract. 2007;22(3):93–103.

    Article  PubMed  Google Scholar 

  6. Kollmann C. New sonographic techniques for harmonic imaging--underlying physical principles. Eur J Radiol. 2007;64(2):164–72.

    Article  PubMed  Google Scholar 

  7. Uppal T. Tissue harmonic imaging. Australas J Ultrasound Med. 2010;13(2):29–31.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hohl C, Schmidt T, Honnef D, Günther RW, Haage P. Ultrasonography of the pancreas. 2. Harmonic imaging. Abdom Imaging. 2007;32(2):150–60.

    Article  CAS  PubMed  Google Scholar 

  9. Abramowicz JS. Technical advances in ultrasound equipment. Clin Obstet Gynecol. 2003;46(4):839–49.

    Article  PubMed  Google Scholar 

  10. Gritzmann NE, Evans DH. New sonographic techniques and applications. Eur J Radiol. 2007;64(2):161–3.

    Article  PubMed  Google Scholar 

  11. Shapiro RS, Wagreich J, Parsons RB, Stancato-Pasik A, Yeh HC, Lao R. Tissue harmonic imaging sonography: evaluation of image quality compared with conventional sonography. AJR Am J Roentgenol. 1998;171(5):1203–6.

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro RS, Stancato-Pasik A, Sims SE. Diagnostic value of tissue harmonic imaging compared with conventional sonography. Comput Biol Med. 2005;35(8):725–33.

    Article  PubMed  Google Scholar 

  13. Meuwly JY, Thiran JP, Gudinchet F. Application of adaptive image processing technique to real-time spatial compound ultrasound imaging improves image quality. Investig Radiol. 2003;38(5):257–62.

    Google Scholar 

  14. Entrekin RR, Porter BA, Sillesen HH, Wong AD, Cooperberg PL, Fix CH. Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound. Semin Ultrasound CT MR. 2001;22(1):50–64.

    Article  CAS  PubMed  Google Scholar 

  15. Wortsman XC, Holm EA, Wulf HC, Jemec GB. Real-time spatial compound ultrasound imaging of skin. Skin Res Technol. 2004;10(1):23–31.

    Article  PubMed  Google Scholar 

  16. Claudon M, Tranquart F, Evans DH, Lefèvre F, Correas M. Advances in ultrasound. Eur Radiol. 2002;12(1):7–18.

    Article  PubMed  Google Scholar 

  17. Gummadi S, Eisenbrey J, Li J, Li Z, Forsberg F, Lyshchik A, Lium JB. Advances in modern clinical ultrasound. Advanced Ultrasound in Diagnosis and Therapy. 2018;2(2):51–63.

    Article  Google Scholar 

  18. Downey DB, Fenster A, Williams JC. Clinical utility of three-dimensional US. Radiographics. 2000;20(2):559–71.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon SH, Gopal AS. 3D and 4D ultrasound: current Progress and future perspectives. Curr Cardiovasc Imaging Rep. 2017;10(12):43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gebhard RE, Eubanks TN, Meeks R. Three-dimensional ultrasound imaging. Curr Opin Anaesthesiol. 2015;28(5):583–7.

    Article  PubMed  Google Scholar 

  21. Wilson SR, Burns PN. Microbubble-enhanced US in body imaging: what role? Radiology. 2010;257(1):24–39.

    Article  PubMed  Google Scholar 

  22. Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY). 2018;43(4):762–72.

    Article  Google Scholar 

  23. Hunt D, Romero J. Contrast-enhanced ultrasound. Magn Reson Imaging Clin N Am. 2017;25(4):725–36.

    Article  PubMed  Google Scholar 

  24. Feinstein SB, Coll B, Staub D, et al. Contrast enhanced ultrasound imaging. J Nucl Cardiol. 2010;17(1):106–15.

    Article  PubMed  Google Scholar 

  25. Gong P, Song P, Chen S. Improved contrast-enhanced ultrasound imaging with multiplane-wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(2):178–87.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu D, Han Y, Chen T. Contrast-enhanced ultrasound for differentiation of benign and malignant thyroid lesions: meta-analysis. Otolaryngol Head Neck Surg. 2014;151(6):909–15.

    Article  PubMed  Google Scholar 

  27. Park GY, Kwon DR. Application of real-time sonoelastography in musculoskeletal diseases related to physical medicine and rehabilitation. Am J Phys Med Rehabil. 2011;90(11):875–86.

    Article  PubMed  Google Scholar 

  28. Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64(12):1196–202.

    Article  CAS  PubMed  Google Scholar 

  29. De Zordo T, Chhem R, Smekal V, et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med. 2010;31(4):394–400.

    Article  PubMed  Google Scholar 

  30. Ozturk A, Grajo JR, Dhyani M, Anthony BW, Samir AE. Principles of ultrasound elastography. Abdom Radiol (NY). 2018;43(4):773–85.

    Article  Google Scholar 

  31. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(1019):1435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave Elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855–70.

    Article  PubMed  Google Scholar 

  33. Carlsen JF, Ewertsen C, Săftoiu A, Lönn L, Nielsen MB. Accuracy of visual scoring and semi-quantification of ultrasound strain elastography--a phantom study. PLoS One. 2014;9(2):e88699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ewertsen C, Carlsen JF, Christiansen IR, Jensen JA, Nielsen MB. Evaluation of healthy muscle tissue by strain and shear wave elastography - dependency on depth and ROI position in relation to underlying bone. Ultrasonics. 2016;71:127–33.

    Article  PubMed  Google Scholar 

  35. Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46(14):2381–7.

    Article  PubMed  Google Scholar 

  36. Creze M, Nordez A, Soubeyrand M, Rocher L, Maître X, Bellin MF. Shear wave sonoelastography of skeletal muscle: basic principles, biomechanical concepts, clinical applications, and future perspectives. Skelet Radiol. 2018;47(4):457–71.

    Article  Google Scholar 

  37. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  38. Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). EFSUMB-Leitlinien und Empfehlungen zur klinischen Anwendung der Leberelastographie, update 2017 (Langversion). Ultraschall Med. 2017;38(4):e48.

    Article  PubMed  Google Scholar 

  39. Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology. 2014;272(3):622–33.

    Article  PubMed  Google Scholar 

  40. Hwang J, Yoon HM, Jung AY, Lee JS, Cho YA. Comparison of 2-dimensional shear wave Elastographic measurements using ElastQ imaging and SuperSonic shear imaging: phantom study and clinical pilot study. J Ultrasound Med. 2020;39(2):311–21.

    Article  PubMed  Google Scholar 

  41. Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–33.

    Article  PubMed  Google Scholar 

  42. Nelson BP, Sanghvi A. Out of hospital point of care ultrasound: current use models and future directions. Eur J Trauma Emerg Surg. 2016;42(2):139–50.

    Article  CAS  PubMed  Google Scholar 

  43. Gillman LM, Kirkpatrick AW. Portable bedside ultrasound: the visual stethoscope of the 21st century. Scand J Trauma Resusc Emerg Med. 2012;20:18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Conlon TW, Nishisaki A, Singh Y, et al. Moving beyond the stethoscope: diagnostic point-of-care ultrasound in pediatric practice. Pediatrics. 2019;144(4):e20191402.

    Article  PubMed  Google Scholar 

  45. Wydo SM, Seamon MJ, Melanson SW, Thomas P, Bahner DP, Stawicki SP. Portable ultrasound in disaster triage: a focused review. Eur J Trauma Emerg Surg. 2016;42(2):151–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The USG images in this chapter are courtesy of GE Healthcare, Turkey. The authors would like to thank Ms. Gozde Alpay for sharing the images.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orhan, K., Bayrakdar, I.S. (2021). Advanced Ultrasonography Imaging. In: Orhan, K. (eds) Ultrasonography in Dentomaxillofacial Diagnostics. Springer, Cham. https://doi.org/10.1007/978-3-030-62179-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62179-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62178-0

  • Online ISBN: 978-3-030-62179-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics