Skip to main content

Characterization of Coatings Through Indentation Technique

  • Chapter
  • First Online:
Coatings

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Instrumented indentation tests are most promising, reliable, easy non-destructive testing procedures in the materials research and these procedures are extended to characterize the coatings developed on the surface of the substrates. Indentation tests are conducted at different length scales i.e. Macro to Nano levels. The indentation tests data is used to determine the different mechanical properties of the coatings. This chapter gives the different numerical procedures or analytical models used to evaluate the Elasto-plastic deformation behaviour of coatings by using indentation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.P. Sharma, A.K. Bhargava, in Mechanical Behaviour and Testing of Materials (PHI, 2011)

    Google Scholar 

  2. T. Kondo, Y. Takigawa, T. Sakuma, High-temperature tensile ductility in TZP and TiO2–doped TZP. Mater. Sci. Eng. 231, 163–169 (1997)

    Article  Google Scholar 

  3. D. Tabor, Hardness of Metals (Clarendon Press, Oxford, 1951)

    Google Scholar 

  4. K.L. Johnson, in Contact Mechanics (Cambridge University press, 1985)

    Google Scholar 

  5. X. Hernot et al., Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation. Int. J. Solids Struct. 43, 4136–4150 (2006)

    Google Scholar 

  6. J.S. Field, M.V. Swain, A simple productive model for spherical indentation. J. Mater. Res. 8, 297–306 (1993)

    Google Scholar 

  7. W.C. Oliver, G.M. Pharr, An improved technique for determining the hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  8. M.F. Doener, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601–609 (1986)

    Article  Google Scholar 

  9. N. Huber, Tsagrakis, C. Tsakmakis, Determination of constitutive properties of thin metallic films on substrates by spherical indentation using neural networks. Int. J. Solids Struct. 37, 6499–6516 (2000)

    Google Scholar 

  10. J.M. Antunes et al., A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters. Int. J. Solids Struct. 44, 5803–5817 (2007)

    Google Scholar 

  11. B. Sridhar Babu, A. Kumaraswamy, B. Anjaneya Prasad, in Investigation of Elasto-Plastic Deformation Behavior of Haynes242 Alloy Subjected to Nanoscale Loads through Indentation Experiments. Transactions of Indian institute of metals (Springer, Berlin, 2015)

    Google Scholar 

  12. B. Sridhar Babu, A. Kumaraswamy, B. Anjaneya Prasad, Effect of indentation size and strain rate on nanomechanical behavior of Ti-6Al-4V alloy. Trans. of Indian Inst. Met. 67(5) (2014)

    Google Scholar 

  13. J.L. Bucaille et al., Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663–1678 (2003)

    Google Scholar 

  14. N. Chollacoop, M. Dao, S. Suresh, Depth sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713–3729 (2003)

    Article  CAS  Google Scholar 

  15. J.G. Swadener et al., Determination of elasto plastic properties by instrumented sharp indentation. J. Mech. Phys. Solids 50, 681–694 (2002)

    Article  Google Scholar 

  16. S. Suresh et al., A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755–5767 (1998)

    Google Scholar 

  17. W.H. Poisl, W.C. Oliver, B.D. Fabes, The relation between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024–2032 (1995)

    Google Scholar 

  18. Y. Liu, A.H.W. Ngan, Depth dependence of hardness in copper single crystals measured by nanoindentation. Scrpta Mater. 44, 237–247 (2001)

    Google Scholar 

  19. M.J. Mayo, W.D. Nix, A micro indentation study of super plasticity in Pb Sn and Sn-38 wt-percent-Pb. Acta Metall. 36(8), 2183–2192 (1998)

    Google Scholar 

  20. M. Dao et al., Computational modelling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918 (2001)

    Article  CAS  Google Scholar 

  21. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sridhar Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babu, B.S., Kumar, K. (2021). Characterization of Coatings Through Indentation Technique. In: Kumar, K., Babu, B.S., Davim, J.P. (eds) Coatings. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-62163-6_6

Download citation

Publish with us

Policies and ethics