Skip to main content

EphA7+ Multipotent Pericytes and Their Roles in Multicellular Organisms

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

  • 270 Accesses

Abstract

Existence of multipotent pericytes (MPCs) implies that microvasculature plays a role not only as ducts for blood, but also as a reservoir for stem cells that contributes to tissue maintenance and regeneration. Nerve network is closely linked to the distribution of microvasculature, namely the ‘nerve and vessel wiring’. Thus, microvasculature may function to support the fundamental systems for the maintenance of multicellular organisms, i.e. blood circulating-, cell supplementing- and information processing- systems. Although this research field is gaining much attention for their potential importance in biological science and clinical application, the lack of an appropriate marker for MPCs impedes our understanding of their pathophysiological roles. Using the new marker, EphA7, capillary stem cells (CapSCs) can be isolated from crude PC fractions as a cell population with high regenerative potency. This chapter describes the role of MPCs, especially a new subpopulation of MPCs, CapSCs, in the microvascular functions to maintain multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araki T, Milbrandt J (1996) Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron 17(2):353–361

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Zimonjic DB, Popescu NC, Milbrandt J (1997) Mechanism of homophilic binding mediated by ninjurin, a novel widely expressed adhesion molecule. J Biol Chem 272(34):21373–21380

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  CAS  PubMed  Google Scholar 

  • Asanome A et al (2014) Nerve growth factor stimulates regeneration of perivascular nerve, and induces the maturation of microvessels around the injured artery. Biochem Biophys Res Commun 443(1):150–155

    Article  CAS  PubMed  Google Scholar 

  • Bautch VL (2011) Stem cells and the vasculature. Nat Med 17(11):1437–1443

    Article  CAS  PubMed  Google Scholar 

  • Berry SE, Liu J, Chaney EJ, Kaufman SJ (2007) Multipotential mesoangioblast stem cell therapy in the mdx/utrn−/− mouse model for Duchenne muscular dystrophy. Regen Med 2(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A et al (2013a) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A et al (2013b) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22(16):2298–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A et al (2013c) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A et al (2013d) Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Exp Cell Res 319(1):45–63

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35(6):1151–1159

    Article  PubMed  Google Scholar 

  • Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200

    Article  CAS  PubMed  Google Scholar 

  • Cathery W, Faulkner A, Maselli D, Madeddu P (2018) Concise review: the regenerative journey of pericytes toward clinical translation. Stem Cells 36(9):1295–1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Cattin AL et al (2015) Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 162(5):1127–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corselli M, Chen CW, Crisan M, Lazzari L, Peault B (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30(6):1104–1109

    Article  CAS  PubMed  Google Scholar 

  • Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  • Dellavalle A et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Flores L et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969

    CAS  PubMed  Google Scholar 

  • Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26(5):613–624

    Article  CAS  PubMed  Google Scholar 

  • Eichmann A, Thomas JL (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3(1):a006551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrington-Rock C et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci USA 108(16):6503–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry CS et al (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Xu C, Asada N, Frenette PS (2018) The hematopoietic stem cell niche: from embryo to adult. Development 145(2)

    Google Scholar 

  • Genander M, Frisen J (2010) Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol 22(5):611–616

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes-Camboa N et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20(3):345–359. e345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashiji N et al (2015) G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun 6:6745

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780

    Article  PubMed  CAS  Google Scholar 

  • Hosaka K et al (2016) Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci USA 113(38):E5618–E5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  CAS  PubMed  Google Scholar 

  • Kabara M et al (2014) Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature. A cellular tool for studies of vascular remodeling and regeneration. Lab Investig 94(12):1340–1354

    Article  CAS  PubMed  Google Scholar 

  • Kano et al (2020) EphA7(+) perivascular cells as myogenic and angiogenic precursors improving skeletal muscle regeneration in a muscular dystrophic mouse model. Stem Cell Res 47:101914

    Google Scholar 

  • Kawabe J, Hasebe N (2014) Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. Biomed Res Int 2014:701571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keefe AC et al (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087

    Article  CAS  PubMed  Google Scholar 

  • Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL (2014) Targeting pericytes for angiogenic therapies. Microcirculation 21(4):345–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan JA et al (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351(6269):176–180

    Article  CAS  PubMed  Google Scholar 

  • Klimczak A, Kozlowska U, Kurpisz M (2018) Muscle stem/progenitor cells and mesenchymal stem cells of bone marrow origin for skeletal muscle regeneration in muscular dystrophies. Arch Immunol Ther Exp 66(5):341–354

    Article  CAS  Google Scholar 

  • Kondo T et al (2003) Establishment of conditionally immortalized rat retinal pericyte cell lines (TR-rPCT) and their application in a co-culture system using retinal capillary endothelial cell line (TR-iBRB2). Cell Struct Funct 28(3):145–153

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2013) Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev Cell 24(4):359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805

    Article  CAS  PubMed  Google Scholar 

  • Liu K et al (2018) A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme. Development 145(18)

    Google Scholar 

  • Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G (2011) The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 31(7):1530–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuki M et al (2015) Ninjurin1 is a novel factor to regulate angiogenesis through the function of pericytes. Circ J 79(6):1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20(8):833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menorca RM, Fussell TS, Elfar JC (2013) Nerve physiology: mechanisms of injury and recovery. Hand Clin 29(3):317–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Minasi MG et al (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783

    CAS  PubMed  Google Scholar 

  • Minoshima A et al (2018) Pericyte-specific Ninjurin1 deletion attenuates vessel maturation and blood flow recovery in hind limb ischemia. Arterioscler Thromb Vasc Biol 38(10):2358–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa S et al (2009) Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379(4):1114–1119

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramatsu R et al (2012) Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat Med 18(11):1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N (2012) Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J 31(4):842–855

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33(6):1962–1974

    Article  CAS  PubMed  Google Scholar 

  • Obinata M (1997) Conditionally immortalized cell lines with differentiated functions established from temperature-sensitive T-antigen transgenic mice. Genes Cells 2(4):235–244

    Article  CAS  PubMed  Google Scholar 

  • Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52

    Article  CAS  PubMed  Google Scholar 

  • Perin EC et al (2015) A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res 117(6):576–584

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    Article  CAS  PubMed  Google Scholar 

  • Shimizu F et al (2008) Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217(2):388–399

    Article  CAS  PubMed  Google Scholar 

  • Stallcup WB (2018) The NG2 proteoglycan in Pericyte biology. Adv Exp Med Biol 1109:5–19

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438

    Article  CAS  PubMed  Google Scholar 

  • Tang W et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita Y et al (2019) Ninjurin 1 mediates peripheral nerve regeneration through Schwann cell maturation of NG2-positive cells. Biochem Biophys Res Commun 519(3):462–468

    Article  CAS  PubMed  Google Scholar 

  • van Dijk CG et al (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89

    Article  PubMed  Google Scholar 

  • Vanlandewijck M et al (2018) Author correction: a molecular atlas of cell types and zonation in the brain vasculature. Nature 560(7716):E3

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2012) Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 21(7):1069–1089

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y et al (2020) Capillary-resident EphA7(+) pericytes are multipotent cells with anti-ischemic effects through capillary formation. Stem Cells Transl Med 9(1):120–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I would like to thank the labo members, especially M. Kabara, Y. Yoshida, K. Kano, Y. Tomita, K. Horiuchi, A. Minoshima, T. Matsuki and also Dr. N. Hasebe and T. Araki for useful comments. This work was supported by grants JSPS KAKENHI (17H04170, 17 K19368, 18K16379, 19K16969, 19K16905), and in part by Daiichi Sankyo Co. Ltd., and Asbio Pharmer Co. Ltd. And OideCapiSEA, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ichi Kawabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawabe, JI. (2021). EphA7+ Multipotent Pericytes and Their Roles in Multicellular Organisms. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_8

Download citation

Publish with us

Policies and ethics