Skip to main content

Effects of Cytomegalovirus on Pericytes

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

  • 294 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 1:13–25

    Article  CAS  Google Scholar 

  • Alberola J, Tamarit A, Igual R, Navarro D (2000) Early neutralizing and glycoprotein B (gB)-specific antibody responses to human cytomegalovirus (HCMV) in immunocompetent individuals with distinct clinical presentations of primary HCMV infection. J Clin Virol 2:113–122

    Article  Google Scholar 

  • Alcendor DJ, Charest AM, Zhu WQ, Vigil HE, Knobel SM (2012) Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflamm 9:95

    Article  CAS  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Aronoff DM, Correa H, Rogers LM, Arav-Boger R, Alcendor DJ (2017) A Placental pericytes and cytomegalovirus infectivity: implications for HCMV placental pathology and congenital disease. Am J Reprod Immunol 2017:78

    Google Scholar 

  • Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 2:451–455

    Article  CAS  Google Scholar 

  • Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 6:637–644

    Article  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 1:1–13

    Article  CAS  Google Scholar 

  • Barnes LL, Capuano AW, Aiello AE, Turner AD, Yolken RH, Torrey EF, Bennett DA (2015) Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. J Infect Dis 2:230–237

    Article  CAS  Google Scholar 

  • Beam E, Dioverti V, Razonable RR (2014) Emerging cytomegalovirus management strategies after solid organ transplantation: challenges and opportunities. Curr Infect Dis Rep 9:419

    Article  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman N, Belmont HM (2017) Disseminated cytomegalovirus infection complicating active treatment of systemic lupus erythematosus: an emerging problem. Lupus 4:431–434

    Article  CAS  Google Scholar 

  • Birbrair A (2018) Pericyte biology: development, homeostasis, and disease. Adv Exp Med Biol 1109:1–3

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM et al (2018) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    Article  CAS  Google Scholar 

  • Blankenberg S, Rupprecht HJ, Bickel C, Espinola-Klein C, Rippin G, Hafner G, Ossendorf M, Steinhagen K, Meyer J (2001) Cytomegalovirus infection with interleukin-6 response predicts cardiac mortality in patients with coronary artery disease. Circulation 24:2915–2921

    Article  Google Scholar 

  • Boeckh M, Geballe AP (2011) Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Investig 121:1673–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boppana SB, Pass RF, Britt WJ, Stagno S, Alford CA (1992) Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 11:93–99

    Article  CAS  PubMed  Google Scholar 

  • Boppana SB, Fowler KB, Pass RF, Rivera LB, Bradford RD, Lakeman FD, Britt WJ (2005) Congenital cytomegalovirus infection: association between virus burden in infancy and hearing loss. J Pediatr 146:817–823

    Article  PubMed  Google Scholar 

  • Bouwman JJ, Visseren FL, Bouter KP, Diepersloot RJ (2008) Infection-induced inflammatory response of adipocytes in vitro. Int J Obes 32:892–901

    Article  CAS  Google Scholar 

  • Brito AF, Pinney JW (2020) The evolution of protein domain repertoires: shedding light on the origins of the Herpesviridae family. Virus Evol 6(1):veaa001. https://doi.org/10.1093/ve/veaa001

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA (2019) Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci 13:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Liu H, Zhao J, Chen LY, Chen J, Lu Z, Hu X (2017) Pericytes in brain injury and repair after ischemic stroke. Transl Stroke Res 2:107–121

    Article  CAS  Google Scholar 

  • Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q (2018) Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis 4:1223–1234

    Article  CAS  Google Scholar 

  • Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213

    Article  PubMed  Google Scholar 

  • Cheeran MC, Lokensgard JR, Schleiss MR (2009) Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 1:99–126

    Article  CAS  Google Scholar 

  • Chen S, de Craen AJ, Raz Y, Derhovanessian E, Vossen AC, Westendorp RG, Pawelec G, Maier AB (2012) Cytomegalovirus seropositivity is associated with glucose regulation in the oldest old. Results from the Leiden 85-plus Study. Immun Ageing 1:18

    Article  Google Scholar 

  • Chen SJ, Wang SC, Chen YC (2019) Antiviral agents as therapeutic strategies against cytomegalovirus infections. Viruses 12(1):23

    Article  Google Scholar 

  • Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F (2018) Molecular determinants and the regulation of human cytomegalovirus latency and reactivation. Viruses 10(8):20. pii: E444

    Article  CAS  Google Scholar 

  • Colugnati FA, Staras SA, Dollard SC, Cannon MJ (2007) Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect Dis 7:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias DO, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M et al (2018) Reducingpericyte-derivedscarringpromotesrecoveryafterspinal cordinjury. Cell 173:153.e22–165.e22

    CAS  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Díaz-Flores JL (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    CAS  PubMed  Google Scholar 

  • Dollard SC, Grosse SD, Ross DS (2007) New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol 5:355–363

    Article  Google Scholar 

  • Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 16:1581–1593

    Article  Google Scholar 

  • Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Methods Mol Biol 686:49–68

    Article  CAS  PubMed  Google Scholar 

  • Eberth CJ (1871) Handbuch der Lehre von der Gewegen des Menschen und der Tiere, vol 1. Engelmann, Leipzig

    Google Scholar 

  • Enders G, Daiminger A, Bäder U, Exler S, Enders M (2011) Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J Clin Virol 52:244–256

    Article  PubMed  Google Scholar 

  • Engelhardt B (2003) Development of the blood-brain barrier. Cell Tissue Res 1:119–129

    Article  CAS  Google Scholar 

  • Farias KPRA, Moreli ML, Floriano VG, da Costa VG (2019) Evidence based on a meta-analysis of human cytomegalovirus infection in glioma. Arch Virol 164(5):1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO (2005) In vitro models for the blood–brain barrier. Toxicol In Vitro 19:299–334

    Article  CAS  PubMed  Google Scholar 

  • Gkrania-Klotsas E, Langenberg C, Sharp SJ, Luben R, Khaw KT, Wareham NJ (2012) Higher immunoglobulin G antibody levels against cytomegalovirus are associated with incident ischemic heart disease in the population-based EPIC-Norfolk cohort. J Infect Dis 2012(206):1897–1903

    Article  CAS  Google Scholar 

  • Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    Article  PubMed  CAS  Google Scholar 

  • Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenerg 2:1–14

    Article  Google Scholar 

  • Haspot F et al (2012) Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH independent and cholesterol-dependent manner. PLoS One 7:e34795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heald-Sargent TA, Forte E, Liu X, Thorp EB, Abecassis MM, Zhang ZJ, Hummel MA (2020) New insights into the molecular mechanisms and immune control of cytomegalovirus reactivation. Transplantation 104:e118–e124. https://doi.org/10.1097/TP.0000000000003138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesp ZC, Yoseph RY, Suzuki R, Jukkola P, Wilson C, Nishiyama A et al (2018) Proliferating NG2-cell-dependent angiogenesis and scar formation alter axon growth and functional recovery after spinal cord injury in mice. J Neurosci 38:1366–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang ZR, Yu LP, Yang XC, Zhang F, Chen YR, Feng F, Qian XS, Cai J (2012) Human cytomegalovirus linked to stroke in a Chinese population. CNS Neurosci Ther 6:457–460

    Article  CAS  Google Scholar 

  • Janahi EMA, Das S, Bhattacharya SN, Haque S, Akhter N, Jawed A, Wahid M, Mandal RK, Lohani M, Areeshi MY, Ramachandran VG, Almalki S, Dar SA (2018) Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog 120:132–139

    Article  CAS  PubMed  Google Scholar 

  • Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 4:253–276

    Article  Google Scholar 

  • Kylat RI, Kelly EN, Ford-Jones EL (2006) Clinical findings and adverse outcomes in neonates with symptomatic congenital cytomegalovirus (SCCMV) infection. Eur J Pediatrics 165:773–778

    Article  Google Scholar 

  • Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 2:258–265

    Article  CAS  Google Scholar 

  • Lee S, Brook E, Affandi J, Howson P, Tanudjaja SA, Dhaliwal S, Irish A, Price P (2019) A high burden of cytomegalovirus marks poor vascular health in transplant recipients more clearly than in the general population. Clin Transl Immunol 2:e1043

    Article  CAS  Google Scholar 

  • Lichtner M, Cicconi P, Vita S, Cozzi-Lepri A, Galli M, Lo Caputo S, Saracino A, De Luca A, Moioli M, Maggiolo F, Marchetti G, Vullo V, d’Arminio Monforte A, ICONA Foundation Study (2015) Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J Infect Dis 2:178–186

    Article  CAS  Google Scholar 

  • Liesz A (2019) The vascular side of Alzheimer’s disease. Science 6450:223–224

    Article  CAS  Google Scholar 

  • Lindahl P, Hellstrom M, Kalen M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998) Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125:3313–3322

    Article  CAS  PubMed  Google Scholar 

  • Lövheim H, Olsson J, Weidung B, Johansson A, Eriksson S, Hallmans G, Elgh F (2018) Interaction between cytomegalovirus and herpes simplex virus type 1 associated with the risk of Alzheimer’s disease development. J Alzheimers Dis 3:939–945

    Article  CAS  Google Scholar 

  • Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA (2013) Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 4:564–572

    Article  CAS  Google Scholar 

  • Lv YL, Han FF, Gong LL, Liu H, Ma J, Yu WY, Wan ZR, Jia YJ, Zhang W, Shi M, Liu LH (2017) Human cytomegalovirus infection and vascular disease risk: a meta-analysis. Virus Res 227:124–134

    Article  CAS  PubMed  Google Scholar 

  • Martí-Carreras J, Maes P (2019) Human cytomegalovirus genomics and transcriptomics through the lens of next-generation sequencing: revision and future challenges. Virus Genes 2:138–164

    Article  CAS  Google Scholar 

  • Muhlestein JB, Horne BD, Carlquist JF, Madsen TE, Bair TL, Pearson RR, Anderson JL (2000) Cytomegalovirus seropositivity and C-reactive protein have independent and combined predictive value for mortality in patients with angiographically demonstrated coronary artery disease. Circulation 102:1917–1923

    Article  CAS  PubMed  Google Scholar 

  • Nation DA, Ho JK, Dutt S, Han SD, MHC L (2019) Alzheimer’s disease neuroimaging initiative neuropsychological decline improves prediction of dementia beyond Alzheime’s disease biomarker and mild cognitive impairment diagnoses. J Alzheimers Dis 4:1171–1182

    Article  CAS  Google Scholar 

  • Nell S, Lurain BA, Hanson JM, Leurgans SE, Landay AL, Bennett DA, Schneider JA (2013) Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 4:564–572

    Google Scholar 

  • Nigro G, Adler SP (2011) Cytomegalovirus infections during pregnancy. Curr Opin Obstet Gynecol 23:123–128

    Article  PubMed  Google Scholar 

  • Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, Gong H, Richard-Loendt A, Huang W, Saito T, Saido TC, Brandner S, Sethi H, Attwell D (2019) Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 19(6450):365

    Google Scholar 

  • Pak CY, Eun HM, McArthur RG, Yoon JW (1988) Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet 8601:1–4

    Article  Google Scholar 

  • Pass RF, Anderson B (2014) Mother-to-child transmission of cytomegalovirus and prevention of congenital infection. J Pediatr Infect Dis Soc Suppl 1:S2–S6

    Article  Google Scholar 

  • Pass RF, Fowler KB, Boppana SB, Britt WJ, Stagno S (2006) Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol 35:216–220

    Article  PubMed  Google Scholar 

  • Pawlik A, Ostanek L, Brzosko I, Brzosko M, Masiuk M, Machalinski B, Gawronska-Szklarz B (2003) The expansion of CD4+CD28- T cells in patients with rheumatoid arthritis. Arthritis Res Ther 4:R210–R213

    Article  CAS  Google Scholar 

  • Popik W, Correa H, Khatua A, Aronoff DM, Alcendor DJ (2019) Mesangial cells, specialized renal pericytes and cytomegalovirus infectivity: implications for HCMV pathology in the glomerular vascular unit and post-transplant renal disease. J Transl Sci 2019:5

    Google Scholar 

  • Price P, Eddy KS, Papadimitriou JM, Robertson TA, Shellam GR (1990) Cytomegalovirus infection of adipose tissues induces steatitis in adult mice. Int J Exp Pathol 4:557–571

    Google Scholar 

  • Ramsauer M, Krause D, Dermietzel R (2002) Angiogenesis of the blood–brain barrier in vitro and the function of cerebral pericytes. FASEB J 16:1274–1276

    Article  CAS  PubMed  Google Scholar 

  • Rawlinson WD, Boppana SB, Fowler KB, Kimberlin DW, Lazzarotto T, Alain S, Daly K, Doutré S, Gibson L, Giles ML, Greenlee J, Hamilton ST, Harrison GJ, Hui L, Jones CA, Palasanthiran P, Schleiss MR, Shand AW, van Zuylen WJ (2017) Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis 6:e177–e188

    Article  Google Scholar 

  • Ribbert H (1904) Ueber protozoenartige Zellen in der Niere eines syphilitischen Neugeborenen und in der Parotis von Kindern. Zbl All Pathol 15:945–948

    Google Scholar 

  • Rothe K, Quandt D, Schubert K, Rossol M, Klingner M, Jasinski-Bergner S, Scholz R, Seliger B, Pierer M, Baerwald C, Wagner U (2016) Latent cytomegalovirus infection in rheumatoid arthritis and increased frequencies of cytolytic LIR-1+CD8+ T cells. Arthritis Rheumatol 2:337–346

    Article  CAS  Google Scholar 

  • Rouget C (1873) Me’moire sur le de’veloppement, la structure et les propriete’s physiologiques des capillaires sanguins et lymphatiques. Arch Physiol Norm Path 5:603–663

    Google Scholar 

  • Rowe WP, Hartley JW, Waterman S, Turner HC, Huebner RJ (1956) Cytopathogenic agents resembling human salivary gland virus recovered from tissue cultures of human adenoids. Proc Soc Exp Biol 92:418–424

    Article  CAS  PubMed  Google Scholar 

  • Rustenhoven J, Jansson D, Smyth LC, Dragunow M (2017) Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci 3:291–304

    Article  CAS  Google Scholar 

  • Salmina AB, Komleva YK, Lopatina OL, Birbrair A (2019) Pericytes in Alzheimer’s disease: novel clues to cerebral amyloid angiopathy pathogenesis. Adv Exp Med Biol 1147:147–166

    Article  CAS  PubMed  Google Scholar 

  • Schottstedt V, Blümel J, Burger R et al (2010) Human cytomegalovirus (HCMV)-revised. Transfus Med Hemother 2010(37):365–375

    Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One 6:e16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims DE (1986) The pericyte—a review. Tissue Cell 18:153–174

    Article  CAS  PubMed  Google Scholar 

  • Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87(Pt 7):1763–1779

    Article  CAS  PubMed  Google Scholar 

  • Smith MG (1956) Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med 92:424–430

    Article  CAS  PubMed  Google Scholar 

  • Smith SW, Chand S, Savage CO (2012) Biology of the renal pericyte. Nephrol Dial Transplant 27:2149–2155

    Article  PubMed  Google Scholar 

  • Smyth LCD, Rustenhoven J, Scotter EL, Schweder P, Faull RLM, Park TIH, Dragunow M (2018) Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat 92:48–60

    Article  CAS  PubMed  Google Scholar 

  • Sochocka M, Zwolińska K, Leszek J (2017) The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol 7:996–1009

    Google Scholar 

  • Spyridopoulos I et al (2016) CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results fromthe Newcastle 85+ study. Aging Cell 15:389–392

    Article  CAS  PubMed  Google Scholar 

  • Stagno S, Pass RF, Cloud G, Britt WJ, Henderson RE, Walton PD, Veren DA, Page F, Alford C (1986) Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 14:1904–1808

    Article  Google Scholar 

  • Stallcup WB (2018) The NG2 proteoglycan in pericyte biology. Adv Exp Med Biol 1109:5–19

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  PubMed  Google Scholar 

  • Vancíková Z, Dvorák P (2001) Cytomegalovirus infection in immunocompetent and immunocompromised individuals--a review. Curr Drug Targets Immune Endocr Metabol Disord 2:179–187

    Article  Google Scholar 

  • Wang GC, Kao WH, Murakami P, Xue QL, Chiou RB, Detrick B, McDyer JF, Semba RD, Casolaro V, Walston JD, Fried LP (2010) Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am J Epidemiol 10:1144–1152

    Article  Google Scholar 

  • Wang C, Zhang X, Bialek S, Cannon MJ (2011) Attribution of congenital cytomegalovirus infection to primary versus non-primary maternal infection. Clin Infect Dis 2:e11–e13

    Article  Google Scholar 

  • Weller TH, MacAuley JC, Craig JM, Wirth P (1957) Isolation of intranuclear inclusion producing agents from infants with illnesses resembling cytomegalic inclusion disease. Exp Biol Med 94:4–12

    Article  Google Scholar 

  • Wilkerson I, Laban J, Mitchell J, Sheibani N, Alcendor DJ (2015) Retinal pericytes and cytomegalovirus infectivity: Implications for both CMV induced retinopathy and congenital ocular disease. J Neuroinflamm 12:2

    Article  CAS  Google Scholar 

  • Yaiw KC, Mohammad AA, Costa H, Taher C, Badrnya S, Assinger A, Wilhelmi V, Ananthaseshan S, Estekizadeh A, Davoudi B, Ovchinnikova O, Shlyakhto E, Rafnsson A, Khan Z, Butler L, Rahbar A, Pernow J, Söderberg-Nauclér C (2015) Human cytomegalovirus up-regulates endothelin receptor type B: implication for vasculopathies? Open Forum Infect Dis 4:ofv155

    Article  CAS  Google Scholar 

  • Yamanaka N (1988) Development of the glomerular mesangium. Pediatr Nephrol 2:85–91

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Kanekiyo T (2017) Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci 18(9):E1965. pii: E1965

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Jih J, Jiang J, Zhou ZH (2017) Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science 356:6345. pii: eaam6892

    Article  CAS  Google Scholar 

  • Zimmermann KW (1923) Der feinere Bau der Blutkapillaren. Z Anat Entwicklungsgesch 68:29–109

    Article  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Waldemar Popik and Atanu Khatua for past collaborations.

Dedication

Special dedication to Dr. James E.K. Hildreth MD, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Alcendor .

Editor information

Editors and Affiliations

Ethics declarations

Funding: D.J.A. was supported by the Meharry Zika Startup Grant and a Research Centers in Minority Institutions (RCMI) program grant (U54MD007586-01).

Disclosure of Interests: All authors declare they have no conflict of interest.

Ethical approval: Studies involving humans.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the Institutional Review Boards (IRB) of Meharry Medical College, Johns Hopkins University Medical Center, and Vanderbilt University Medical Center. This includes all de-identified specimens from patients on slides.

Ethical approval: Studies involving animals.

This article does not contain any studies with animals performed by any of the authors.

Informed Consent: Informed consent for participation and publication was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alcendor, D.J. (2021). Effects of Cytomegalovirus on Pericytes. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_4

Download citation

Publish with us

Policies and ethics