Skip to main content

Pericytes in Myocardial Diseases

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

  • 312 Accesses

Abstract

The adult mammalian heart contains a large number of pericytes that regulate blood flow, while supporting baseline microvascular structure and function. Considering their abundance, strategic peri-endothelial location, functional diversity and phenotypic plasticity, pericytes may be critically involved in a wide range of myocardial pathologic conditions. Following myocardial infarction, cardiac pericytes may regulate inflammatory, reparative, angiogenic and fibrogenic responses. Moreover, pericyte-mediated microvascular constriction may contribute to the pathogenesis of “no-reflow” in the ischemic and reperfused myocardium. Cell therapy with pericytes has been suggested to exert beneficial actions in experimental models of myocardial infarction. The underlying mechanisms of protection may involve modulation of inflammation, suppression of fibrosis and stimulation of angiogenesis. Pericytes may also be involved in the pathogenesis of heart failure by converting to myofibroblasts, by secreting fibrogenic and pro-inflammatory mediators, and my regulating microvascular blood flow. Unfortunately, limited information is currently available on the role of pericytes in myocardial diseases. There is an urgent need for systematic investigation of pericyte actions in the ischemic, infarcted and failing heart using experimental animal models and human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alex L, Frangogiannis NG (2019) Pericytes in the infarcted heart. Vasc Biol 1:H23–H31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alex L, Russo I, Holoborodko V, Frangogiannis NG (2018) Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 315:H934–H949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, Kamran P, Muller AM, Volz KS, Tang Z, Red-Horse K, Ardehali R (2014) Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res 115:625–635

    Article  CAS  PubMed  Google Scholar 

  • Alvino VV, Fernandez-Jimenez R, Rodriguez-Arabaolaza I, Slater S, Mangialardi G, Avolio E, Spencer H, Culliford L, Hassan S, Sueiro Ballesteros L, Herman A, Ayaon-Albarran A, Galan-Arriola C, Sanchez-Gonzalez J, Hennessey H, Delmege C, Ascione R, Emanueli C, Angelini GD, Ibanez B, Madeddu P (2018) Transplantation of allogeneic pericytes improves myocardial vascularization and reduces interstitial fibrosis in a swine model of reperfused acute myocardial infarction. J Am Heart Assoc 7:e006727

    Article  PubMed  PubMed Central  Google Scholar 

  • Anzai A, Choi JL, He S, Fenn AM, Nairz M, Rattik S, McAlpine CS, Mindur JE, Chan CT, Iwamoto Y, Tricot B, Wojtkiewicz GR, Weissleder R, Libby P, Nahrendorf M, Stone JR, Becher B, Swirski FK (2017) The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J Exp Med 214:3293–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, Tersteeg C, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121:80–90

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455

    Article  CAS  PubMed  Google Scholar 

  • Avolio E, Madeddu P (2016) Discovering cardiac pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vasc Pharmacol 86:53–63

    Article  CAS  Google Scholar 

  • Avolio E, Meloni M, Spencer HL, Riu F, Katare R, Mangialardi G, Oikawa A, Rodriguez-Arabaolaza I, Dang Z, Mitchell K, Reni C, Alvino VV, Rowlinson J, Livi U, Cesselli D, Angelini G, Emanueli C, Beltrami AP, Madeddu P (2015a) Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res 116:e81–e94

    Article  CAS  PubMed  Google Scholar 

  • Avolio E, Rodriguez-Arabaolaza I, Spencer HL, Riu F, Mangialardi G, Slater SC, Rowlinson J, Alvino VV, Idowu OO, Soyombo S, Oikawa A, Swim MM, Kong CH, Cheng H, Jia H, Ghorbel MT, Hancox JC, Orchard CH, Angelini G, Emanueli C, Caputo M, Madeddu P (2015b) Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J Am Heart Assoc 4:e002043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A, Epelman S, Artyomov M, Kreisel D, Lavine KJ (2019) Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 124:263–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick S, D’Mello V, Caruso D, Wallerstein A, Abdul-Muneer PM (2019) Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp Neurol 317:260–270

    Article  CAS  PubMed  Google Scholar 

  • Biname F (2014) Transduction of extracellular cues into cell polarity: the role of the transmembrane proteoglycan NG2. Mol Neurobiol 50:482–493

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128:81–93

    Article  CAS  Google Scholar 

  • Bischoff FC, Werner A, John D, Boeckel JN, Melissari MT, Grote P, Glaser SF, Demolli S, Uchida S, Michalik KM, Meder B, Katus HA, Haas J, Chen W, Pullamsetti SS, Seeger W, Zeiher AM, Dimmeler S, Zehendner CM (2017) Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res 121:368–375

    Article  CAS  PubMed  Google Scholar 

  • Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123:2006–2013. discussion 2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camici PG, Olivotto I, Rimoldi OE (2012) The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol 52:857–864

    Article  CAS  PubMed  Google Scholar 

  • Camici PG, Tschope C, Di Carli MF, Rimoldi O, Van Linthout S (2020) Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res 116:806–816

    Article  CAS  PubMed  Google Scholar 

  • Cathery W, Faulkner A, Maselli D, Madeddu P (2018) Concise review: the regenerative journey of pericytes toward clinical translation. Stem Cells 36:1295–1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalera M, Wang J, Frangogiannis NG (2014) Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res 164:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Frangogiannis NG (2017) Immune cells in repair of the infarcted myocardium. Microcirculation 24:e12305

    Article  Google Scholar 

  • Chen W, Saxena A, Li N, Sun J, Gupta A, Lee DW, Tian Q, Dobaczewski M, Frangogiannis NG (2012) Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arterioscler Thromb Vasc Biol 32:2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CW, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, Crisan M, Saparov A, Tobita K, Peault B, Huard J (2013) Human pericytes for ischemic heart repair. Stem Cells 31:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WC, Baily JE, Corselli M, Diaz ME, Sun B, Xiang G, Gray GA, Huard J, Peault B (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33:557–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Huang S, Su Y, Wu YJ, Hanna A, Brickshawana A, Graff J, Frangogiannis NG (2019) Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ Res 125:55–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintalgattu V, Ai D, Langley RR, Zhang J, Bankson JA, Shih TL, Reddy AK, Coombes KR, Daher IN, Pati S, Patel SS, Pocius JS, Taffet GE, Buja LM, Entman ML, Khakoo AY (2010) Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 120:472–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintalgattu V, Rees ML, Culver JC, Goel A, Jiffar T, Zhang J, Dunner K Jr, Pati S, Bankson JA, Pasqualini R, Arap W, Bryan NS, Taegtmeyer H, Langley RR, Yao H, Kupferman ME, Entman ML, Dickinson ME, Khakoo AY (2013) Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med 5:187–169

    Article  CAS  Google Scholar 

  • Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ (1995) Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MA, Paiva AE, Andreotti JP, Cardoso MV, Cardoso CD, Mintz A, Birbrair A (2018) Pericytes constrict blood vessels after myocardial ischemia. J Mol Cell Cardiol 116:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    CAS  PubMed  Google Scholar 

  • Dobaczewski M, Akrivakis S, Nasser K, Michael LH, Entman ML, Frangogiannis NG (2004) Vascular mural cells in healing canine myocardial infarcts. J Histochem Cytochem 52:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Dutta P, Nahrendorf M (2015) Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol 35:1066–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman DA, Jiang Y, Tyburski J, Wilson RF, Steffes C (2006) Pericytes and their role in microvasculature homeostasis. J Surg Res 135:305–311

    Article  CAS  PubMed  Google Scholar 

  • Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP (2007) Lipopolysaccharide activation of pericyte’s toll-like receptor-4 regulates co-culture permeability. Am J Surg 193:730–735

    Article  CAS  PubMed  Google Scholar 

  • Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feenstra DJ, Yego EC, Mohr S (2013) Modes of retinal cell death in diabetic retinopathy. J Clin Exp Ophthalmol 4:298

    PubMed  PubMed Central  Google Scholar 

  • Forbes MS, Rennels ML, Nelson E (1977) Ultrastructure of pericytes in mouse heart. Am J Anat 149:47–70

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5:1841–1875

    Article  PubMed  Google Scholar 

  • Frangogiannis NG (2017a) The role of transforming growth factor (TGF)-beta in the infarcted myocardium. J Thorac Dis 9:S52–S63

    Article  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2017b) The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 127:1600–1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Asp Med 65:70–99

    Article  CAS  Google Scholar 

  • Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG, Michael LH, Entman ML (2000a) Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res 48:89–100

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, Entman ML (2000b) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165:2798–2808

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG, Mendoza LH, Lewallen M, Michael LH, Smith CW, Entman ML (2001) Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J 15:1428–1430

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 128:2127–2143

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao XM, Wu QZ, Kiriazis H, Su Y, Han LP, Pearson JT, Taylor AJ, Du XJ (2017) Microvascular leakage in acute myocardial infarction: characterization by histology, biochemistry, and magnetic resonance imaging. Am J Physiol Heart Circ Physiol 312:H1068–H1075

    Article  PubMed  Google Scholar 

  • Gersch C, Dewald O, Zoerlein M, Michael LH, Entman ML, Frangogiannis NG (2002) Mast cells and macrophages in normal C57/BL/6 mice. Histochem Cell Biol 118:41–49

    Article  CAS  PubMed  Google Scholar 

  • Gilbert RE, Krum H (2015) Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 385:2107–2117

    Article  CAS  PubMed  Google Scholar 

  • Grant RI, Hartmann DA, Underly RG, Berthiaume AA, Bhat NR, Shih AY (2019) Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab 39:411–425

    Article  PubMed  Google Scholar 

  • Guimaraes-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–359. e345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gushi A, Tanaka M, Tsuyama S, Nagai T, Kanzaki T, Kanekura T, Matsuyama T (2008) The 3G5 antigen is expressed in dermal mast cells but not pericytes. J Cutan Pathol 35:278–284

    Article  PubMed  Google Scholar 

  • Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH, Entman ML (1999) Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99:546–551

    Article  CAS  PubMed  Google Scholar 

  • Hanna A, Frangogiannis NG (2019) The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med 6:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    Article  CAS  PubMed  Google Scholar 

  • Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, Ledoux J, Calderone A (2017) Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One 12:e0176147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, Kaczmarek V, Moretti A, Laugwitz KL, Skroblin P, Mayr M, Milting H, Dendorfer A, Reichart B, Wolf E, Kupatt C (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69:131–143

    Article  CAS  PubMed  Google Scholar 

  • Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180:2625–2633

    Article  CAS  PubMed  Google Scholar 

  • Hui M, Tenenbaum HC (1998) New face of an old enzyme: alkaline phosphatase may contribute to human tissue aging by inducing tissue hardening and calcification. Anat Rec 253:91–94

    Article  CAS  PubMed  Google Scholar 

  • Ivey MJ, Tallquist MD (2016) Defining the cardiac fibroblast. Circ J 80:2269–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, SC JL, Aronow BJ, Tallquist MD, Molkentin JD (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7:12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur NK, Wilson S, Yunis AA, Qiao X, Mackey E, Paruchuri V, Baker C, Aronovitz MJ, Karumanchi SA, Letarte M, Kass DA, Mendelsohn ME, Karas RH (2012) Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation 125:2728–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109:894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan WS, Adesida AB, Tew SR, Lowe ET, Hardingham TE (2010) Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res 28:834–840

    Article  CAS  PubMed  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574

    Article  CAS  PubMed  Google Scholar 

  • Kong P, Shinde AV, Su Y, Russo I, Chen B, Saxena A, Conway SJ, Graff JM, Frangogiannis NG (2018) Opposing actions of fibroblast and cardiomyocyte Smad3 signaling in the infarcted myocardium. Circulation 137:707–724

    Article  CAS  PubMed  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  PubMed  Google Scholar 

  • Kramann R, Wongboonsin J, Chang-Panesso M, Machado FG, Humphreys BD (2016) Gli1+ Pericyte loss induces capillary rarefaction and proximal tubular injury. J Am Soc Nephrol 25:1924–1931

    Article  Google Scholar 

  • Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, Gomez IG, Altemeier WA, Duffield JS (2017) Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest 127:321–334

    Article  PubMed  Google Scholar 

  • Lee JS, Jeong SJ, Kim S, Chalifour L, Yun TJ, Miah MA, Li B, Majdoubi A, Sabourin A, Keler T, Guimond JV, Haddad E, Choi EY, Epelman S, Choi JH, Thibodeau J, Oh GT, Cheong C (2018a) Conventional dendritic cells impair recovery after myocardial infarction. J Immunol 201:1784–1798

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Lee CK, Kang S, Park I, Kim YH, Kim SK, Hong SP, Bae H, He Y, Kubota Y, Koh GY (2018b) Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction. J Clin Invest 128:5018–5033

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee LL, Khakoo AY, Chintalgattu V (2019) Isolation and purification of murine cardiac pericytes. J Vis Exp 2019:e53208

    Google Scholar 

  • Leroyer AS, Blin MG, Bachelier R, Bardin N, Blot-Chabaud M, Dignat-George F (2019) CD146 (cluster of differentiation 146). Arterioscler Thromb Vasc Biol 39:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Song D, Mao L, Abraham DM, Bursac N (2020) Lack of Thy1 defines a pathogenic fraction of cardiac fibroblasts in heart failure. Biomaterials 236:119824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  • McConkey HZR, Marber M, Chiribiri A, Pibarot P, Redwood SR, Prendergast BD (2019) Coronary microcirculation in aortic stenosis. Circ Cardiovasc Interv 12:e007547

    Article  PubMed  PubMed Central  Google Scholar 

  • Methner C, Mishra A, Golgotiu K, Li Y, Wei W, Yanez ND, Zlokovic B, Wang RK, Alkayed NJ, Kaul S, Iliff JJ (2019) Pericyte constriction underlies capillary derecruitment during hyperemia in the setting of arterial stenosis. Am J Physiol Heart Circ Physiol 317:H255–H263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meus MA, Hertig V, Villeneuve L, Jasmin JF, Calderone A (2017) Nestin expressed by pre-existing cardiomyocytes recapitulated in part an embryonic phenotype; suppressive role of p38 MAPK. J Cell Physiol 232:1717–1727

    Article  CAS  PubMed  Google Scholar 

  • Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A 108:19725–19730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270

    Article  CAS  PubMed  Google Scholar 

  • Minor M, Alcedo KP, Battaglia RA, Snider NT (2019) Cell type- and tissue-specific functions of ecto-5′-nucleotidase (CD73). Am J Physiol Cell Physiol 317:C1079–C1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559

    Article  PubMed  Google Scholar 

  • Moore-Morris T, Guimaraes-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu Y, Dalton ND, Cedenilla M, Gomez-Amaro R, Zhou B, Brenner DA, Peterson KL, Chen J, Evans SM (2014) Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest 124:2921–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray IR, Baily JE, Chen WCW, Dar A, Gonzalez ZN, Jensen AR, Petrigliano FA, Deb A, Henderson NC (2017) Skeletal and cardiac muscle pericytes: functions and therapeutic potential. Pharmacol Ther 171:65–74

    Article  CAS  PubMed  Google Scholar 

  • Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28:41–61

    CAS  PubMed  Google Scholar 

  • Nayak RC, Berman AB, George KL, Eisenbarth GS, King GL (1988) A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J Exp Med 167:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Nees S, Weiss DR, Senftl A, Knott M, Forch S, Schnurr M, Weyrich P, Juchem G (2012) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302:H69–H84

    Article  CAS  PubMed  Google Scholar 

  • Nyul-Toth A, Kozma M, Nagyoszi P, Nagy K, Fazakas C, Hasko J, Molnar K, Farkas AE, Vegh AG, Varo G, Galajda P, Wilhelm I, Krizbai IA (2017) Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav Immun 64:220–231

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell FM, Attwell D (2014) A role for pericytes in coronary no-reflow. Nat Rev Cardiol 11:427–432

    Article  PubMed  Google Scholar 

  • O’Farrell FM, Mastitskaya S, Hammond-Haley M, Freitas F, Wah WR, Attwell D (2017) Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. elife 6:e29280

    Article  PubMed  PubMed Central  Google Scholar 

  • Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  CAS  PubMed  Google Scholar 

  • Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271

    Article  PubMed  Google Scholar 

  • Pereira FE, Cronin C, Ghosh M, Zhou SY, Agosto M, Subramani J, Wang R, Shen JB, Schacke W, Liang B, Yang TH, McAulliffe B, Liang BT, Shapiro LH (2013) CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice. Cardiovasc Res 100:74–83

    Article  CAS  PubMed  Google Scholar 

  • Pieper C, Pieloch P, Galla HJ (2013) Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res 1524:1–11

    Article  CAS  PubMed  Google Scholar 

  • Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD (2016) Revisiting cardiac cellular composition. Circ Res 118:400–409

    Article  CAS  PubMed  Google Scholar 

  • Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209:1219–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G, Michael LH, Entman ML, Frangogiannis NG (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 50:71–79

    Article  CAS  PubMed  Google Scholar 

  • Rezkalla SH, Stankowski RV, Hanna J, Kloner RA (2017) Management of no-reflow phenomenon in the catheterization laboratory. JACC Cardiovasc Interv 10:215–223

    Article  PubMed  Google Scholar 

  • Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  • Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93

    Article  CAS  PubMed  Google Scholar 

  • Russo I, Cavalera M, Huang S, Su Y, Hanna A, Chen B, Shinde AV, Conway SJ, Graff J, Frangogiannis NG (2019) Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through smad-dependent activation of a matrix-preserving program. Circ Res 124:1214–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sava P, Ramanathan A, Dobronyi A, Peng X, Sun H, Ledesma-Mendoza A, Herzog EL, Gonzalez AL (2017) Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight 2:e96352

    Article  PubMed Central  Google Scholar 

  • Sawtell NM, Lessard JL (1989) Cellular distribution of smooth muscle actins during mammalian embryogenesis: expression of the alpha-vascular but not the gamma-enteric isoform in differentiating striated myocytes. J Cell Biol 109:2929–2937

    Article  CAS  PubMed  Google Scholar 

  • Shinde AV, Humeres C, Frangogiannis NG (1863a) The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta 2017:298–309

    Google Scholar 

  • Shinde AV, Humeres C, Frangogiannis NG (1863b) The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta 2016:298–309

    Google Scholar 

  • Siao CJ, Lorentz CU, Kermani P, Marinic T, Carter J, McGrath K, Padow VA, Mark W, Falcone DJ, Cohen-Gould L, Parrish DC, Habecker BA, Nykjaer A, Ellenson LH, Tessarollo L, Hempstead BL (2012) ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J Exp Med 209:2291–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H, Isacke CM (2012) Pericytes promote selective vessel regression to regulate vascular patterning. Blood 120:1516–1527

    Article  CAS  PubMed  Google Scholar 

  • Sims DE (1986) The pericyte--a review. Tissue Cell 18:153–174

    Article  CAS  PubMed  Google Scholar 

  • Souders CA, Borg TK, Banerjee I, Baudino TA (2012) Pressure overload induces early morphological changes in the heart. Am J Pathol 181:1226–1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundberg C, Ivarsson M, Gerdin B, Rubin K (1996) Pericytes as collagen-producing cells in excessive dermal scarring. Lab Investig 74:452–466

    CAS  PubMed  Google Scholar 

  • Tallquist MD (2020) Cardiac fibroblast diversity. Annu Rev Physiol 82:63–78

    Article  CAS  PubMed  Google Scholar 

  • Tual-Chalot S, Garcia-Collado M, Redgrave RE, Singh E, Davison B, Park C, Lin H, Luli S, Jin Y, Wang Y, Lawrie A, Jakobsson L, Arthur HM (2020) Loss of endothelial endoglin promotes high-output heart failure through peripheral arteriovenous shunting driven by VEGF signaling. Circ Res 126:243–257

    Article  CAS  PubMed  Google Scholar 

  • van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212

    Article  PubMed  CAS  Google Scholar 

  • Vestweber D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15:692–704

    Article  CAS  PubMed  Google Scholar 

  • Villalobos E, Criollo A, Schiattarella GG, Altamirano F, French KM, May HI, Jiang N, Nguyen NUN, Romero D, Roa JC, Garcia L, Diaz-Araya G, Morselli E, Ferdous A, Conway SJ, Sadek HA, Gillette TG, Lavandero S, Hill JA (2019) Fibroblast primary cilia are required for cardiac fibrosis. Circulation 139:2342–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ya J, Markman MW, Wagenaar GT, Blommaart PJ, Moorman AF, Lamers WH (1997) Expression of the smooth-muscle proteins alpha-smooth-muscle actin and calponin, and of the intermediate filament protein desmin are parameters of cardiomyocyte maturation in the prenatal rat heart. Anat Rec 249:495–505

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Joca HC, Nelson MT, Lederer WJ (2020) ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A 117(13):7461–7470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler T, Horstkotte J, Schwab C, Pfetsch V, Weinmann K, Dietzel S, Rohwedder I, Hinkel R, Gross L, Lee S, Hu J, Soehnlein O, Franz WM, Sperandio M, Pohl U, Thomas M, Weber C, Augustin HG, Fassler R, Deutsch U, Kupatt C (2013) Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest 123:3436–3445

    Article  CAS  PubMed Central  Google Scholar 

  • Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman ML, Frangogiannis NG (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Frangogiannis’ laboratory is supported by NIH grants R01 HL76246 and R01 HL85440, and by Department of Defense grants PR151029 and PR181464. Dr. Tuleta is supported by a grant from the Deutsche Forschungsgemeinschaft (TU 632/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alex, L., Tuleta, I., Frangogiannis, N.G. (2021). Pericytes in Myocardial Diseases. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_10

Download citation

Publish with us

Policies and ethics