Skip to main content

In Vivo Optical Imaging and Manipulation of Brain Pericytes

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arango-Lievano M et al (2018) Topographic reorganization of cerebrovascular mural cells under seizure conditions. Cell Rep 23(4):1045–1059

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  CAS  PubMed  Google Scholar 

  • Armulik A et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  • Bell RD et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiaume AA et al (2018a) Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci 10:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthiaume AA et al (2018b) Dynamic remodeling of Pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 22(1):8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A et al (2014a) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birbrair A et al (2014b) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchette M, Daneman R (2015) Formation and maintenance of the BBB. Mech Dev 138(Pt 1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Cai C et al (2018) Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc Natl Acad Sci U S A 115(25):E5796–E5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhatbar PY, Kara P (2013) Improved blood velocity measurements with a hybrid image filtering and iterative radon transform algorithm. Front Neurosci 7:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi M, Yoon J, Choi C (2010) Label-free optical control of arterial contraction. J Biomed Opt 15(1):015006

    Article  PubMed  Google Scholar 

  • Coucha M et al (2019) Inhibition of Ephrin-B2 in brain pericytes decreases cerebral pathological neovascularization in diabetic rats. PLoS One 14(1):e0210523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cudmore RH, Dougherty SE, Linden DJ (2017) Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise. J Cereb Blood Flow Metab 37(12):3725–3743

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuttler AS et al (2011) Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis 49(8):673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daigle TL et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174(2):465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damisah EC et al (2017) A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci 20(7):1023–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman R et al (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4(5):353–364

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  • Dombeck DA et al (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56(1):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dore-Duffy P et al (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69

    Article  CAS  PubMed  Google Scholar 

  • Drew PJ et al (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7(12):981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll JD et al (2013) Two-photon imaging of blood flow in the rat cortex. Cold Spring Harb Protoc 2013(8):759–767

    Article  PubMed  Google Scholar 

  • Foo SS et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173

    Article  CAS  PubMed  Google Scholar 

  • Gao YR et al (2017) Time to wake up: studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 153:382–398

    Article  PubMed  Google Scholar 

  • Goldey GJ et al (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9(11):2515–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant RI et al (2017) Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab:271678X17732229

    Google Scholar 

  • Grubb S et al (2020) Precapillary sphincters maintain perfusion in the cerebral cortex. Nat Commun 11(1):395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grutzendler J, Nedergaard M (2019) Cellular control of brain capillary blood flow: in vivo imaging Veritas. Trends Neurosci 42(8):528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes-Camboa N et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20(3):345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall CN et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday MR et al (2016) Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 36(1):216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann DA et al (2015) Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2(4):041402

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann DA et al (2020) Brain capillary pericytes exert a substantial but slow influence on blood flow. In: bioRxiv

    Google Scholar 

  • Hellstrom M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RA et al (2015) Regional blood flow in the Normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary Pericytes. Neuron 87(1):95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RA et al (2017) Targeted two-photon chemical apoptotic ablation of defined cell types in vivo. Nat Commun 8:15837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtmaat A et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4(8):1128–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W et al (2014) Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 62(6):896–913

    Article  PubMed  Google Scholar 

  • Hyacinth HI et al (2019) Higher prevalence of spontaneous cerebral vasculopathy and cerebral infarcts in a mouse model of sickle cell disease. J Cereb Blood Flow Metab 39(2):342–351

    Article  PubMed  Google Scholar 

  • Ishii Y et al (2006) Mouse brains deficient in neuronal PDGF receptor-beta develop normally but are vulnerable to injury. J Neurochem 98(2):588–600

    Article  CAS  PubMed  Google Scholar 

  • Ivanova E, Kovacs-Oller T, Sagdullaev BT (2017) Vascular Pericyte impairment and Connexin43 gap junction deficit contribute to vasomotor decline in diabetic retinopathy. J Neurosci 37(32):7580–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmbach AS, Waters J (2012) Brain surface temperature under a craniotomy. J Neurophysiol 108(11):3138–3146

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamouchi M et al (2004) Calcium influx pathways in rat CNS pericytes. Brain Res Mol Brain Res 126(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Khennouf L et al (2018) Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain 141(7):2032–2046

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim TN et al (2012) Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals. PLoS One 7(6):e38590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimbrough IF et al (2015) Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease. Brain 138(Pt 12):3716–3733

    Article  PubMed  PubMed Central  Google Scholar 

  • Kisler K et al (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20(3):406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisler K et al (2020) Acute ablation of cortical pericytes leads to rapid neurovascular uncoupling. Front Cell Neurosci 14:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinfeld D et al (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95(26):15741–15746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai AY et al (2015) Venular degeneration leads to vascular dysfunction in a transgenic model of Alzheimer’s disease. Brain 138(Pt 4):1046–1058

    Article  PubMed  Google Scholar 

  • Li B et al (2020) Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J Cereb Blood Flow Metab 40(3):501–512

    Article  PubMed  Google Scholar 

  • Liao M et al (2017) An X-linked Myh11-CreER(T2) mouse line resulting from Y to X chromosome-translocation of the Cre allele. Genesis 55(9)

    Google Scholar 

  • Lindahl P et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  • Lindblom P et al (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17(15):1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17):2453–2454

    Article  CAS  PubMed  Google Scholar 

  • Lou N et al (2016) Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A 113(4):1074–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery RL, Majewska AK (2010) Intracranial injection of adeno-associated viral vectors. J Vis Exp (45)

    Google Scholar 

  • Madisen L et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo C et al (2017) Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “Resting-State” connectivity. Neuron 96(4):936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miners JS et al (2019) CSF evidence of pericyte damage in Alzheimer’s disease is associated with markers of blood-brain barrier dysfunction and disease pathology. Alzheimers Res Ther 11(1):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A et al (2014) Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 9(2):323–336

    Article  CAS  PubMed  Google Scholar 

  • Montagne A et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne A et al (2018) Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 24(3):326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzumdar MD et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–694

    Article  CAS  PubMed  Google Scholar 

  • Nikolakopoulou AM et al (2017) Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-beta signaling. PLoS One 12(4):e0176225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikolakopoulou AM et al (2019) Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 22(7):1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura N et al (2010) Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab 30(12):1914–1927

    Article  PubMed  PubMed Central  Google Scholar 

  • Orlidge A, D’Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105(3):1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Packer AM, Roska B, Hausser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16(7):805–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park L et al (2014) Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke 45(6):1815–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppiatt CM et al (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash R et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9(12):1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratelade J et al (2020) Reducing Hypermuscularization of the transitional segment between arterioles and capillaries protects against spontaneous intracerebral hemorrhage. Circulation

    Google Scholar 

  • Reeves C et al (2019) Spatiotemporal dynamics of PDGFRbeta expression in pericytes and glial scar formation in penetrating brain injuries in adults. Neuropathol Appl Neurobiol 45(6):609–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A 106(35):15025–15030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche M et al (2019) In vivo imaging with a water immersion objective affects brain temperature, blood flow and oxygenation. Elife 8

    Google Scholar 

  • Roome CJ, Kuhn B (2014) Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology. Front Cell Neurosci 8:379

    PubMed  PubMed Central  Google Scholar 

  • Rorsman NJG et al (2018) Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2. Br J Pharmacol 175(11):2028–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungta RL et al (2017) Light controls cerebral blood flow in naive animals. Nat Commun 8:14191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungta RL et al (2018) Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99(2):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustenhoven J, Jansson D, Smyth LC, Drahunow M (2017) Brain Pericytes as mediators of Neuroinflammation. Trends Pharmacol Sci

    Google Scholar 

  • Sato Y et al (1990) Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol 111(2):757–763

    Article  CAS  PubMed  Google Scholar 

  • Sengillo JD et al (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23(3):303–310

    Article  PubMed  Google Scholar 

  • Shih AY et al (2012a) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih AY et al (2012b) A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp (61)

    Google Scholar 

  • Shih AY, Drew PJ, Kleinfeld D (2014) Imaging Vasodynamics in the awake mouse brain with two-photon microscopy. Neurovas Coupling Methods

    Google Scholar 

  • Sikka G et al (2014) Melanopsin mediates light-dependent relaxation in blood vessels. Proc Natl Acad Sci U S A 111(50):17977–17982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark K, Pekayvaz K, Massberg S (2018) Role of pericytes in vascular immunosurveillance. Front Biosci (Landmark Ed) 23:767–781

    Article  CAS  Google Scholar 

  • Stoica L, et al. (2013) Gene transfer to the CNS using recombinant adeno-associated virus. Curr Protoc Microbiol. Chapter 14: p. Unit14D 5

    Google Scholar 

  • Underly RG et al (2017) Pericytes as inducers of rapid, matrix Metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37(1):129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlandewijck M, Betsholtz C (2018) Single-cell mRNA sequencing of the mouse brain vasculature. Methods Mol Biol 1846:309–324

    Article  CAS  PubMed  Google Scholar 

  • Vanlandewijck M et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554(7693):475–480

    Article  CAS  PubMed  Google Scholar 

  • von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629

    Article  CAS  Google Scholar 

  • Wang Y et al (2018) Viral vectors as a novel tool for clinical and neuropsychiatric research applications. Gen Psychiatr 31(2):e000015

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson AN et al (2020) Mild pericyte deficiency is associated with aberrant brain microvascular flow in aged PDGFRbeta(+/−) mice. J Cereb Blood Flow Metab:271678X19900543

    Google Scholar 

  • Wei HS et al (2016) Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron 91(4):851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth A et al (2008) G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 14(1):64–68

    Article  CAS  PubMed  Google Scholar 

  • Wu Y et al (2015) Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle. Vasc Pharmacol 71:192–200

    Article  CAS  Google Scholar 

  • Xu HT et al (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5):549–551

    Article  CAS  PubMed  Google Scholar 

  • Yang G et al (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5(2):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemisci M et al (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15(9):1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Zehendner CM et al (2015) Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci Rep 5:13497

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by grants to A.Y.S. from the NINDS (NS106138, AG063031, NS097775), the Dana Foundation, the American Heart Association (14GRNT20480366), Alzheimer’s Association NIRG award, and an Institutional Development Award (IDeA) from the NIGMS under grant number P20GM12345. A.A.B. is supported by a scholarship from the American Federation of Aging Research. V.C.S is supported by an American Heart Association Post-doctoral Fellowship (20POST35160001). D.A.H. is supported by awards NIH T32 GM08716, NIH - NCATS (UL1 TR001450 and TL1 TR001451), and NIH-NINDS F30NS096868. We thank Patrick J. Mulholland for use of a Zeiss LSM 880 with Airyscan for super-resolution imaging of pericytes (NIH S10 OD021532). We also thank Tiago Figueiredo for creating artwork used in Figs. 1.3 and 1.5a (www.behance.net/TiagoFigueiredoGD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Y. Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berthiaume, AA., Coelho-Santos, V., Hartmann, D.A., Shih, A.Y. (2021). In Vivo Optical Imaging and Manipulation of Brain Pericytes. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_1

Download citation

Publish with us

Policies and ethics