Skip to main content

An Exploration of Simple Reactive Responses for Conveying Aliveness Using the Haru Robot

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12483)

Abstract

This paper describes the development of simple robotic reactive responses for the tabletop robot Haru. While reactive responses in organisms are associated with a biological purpose, they may also play a role in conveying agency in the sense of aliveness. In this paper, we are therefore interested in the design of simple reflexive behaviors that can convey a sense of agency for the Haru robot (see Fig. 1). To this end, we explore what kind of reactive responses humans find appropriate for a platform like Haru in different situations. Specifically, we conducted an elicitation study in which participants were asked to design Haru’s reactive response similar to either (1) that of a human, (2) a pet animal, or (3) in a freestyle manner befitting its design. Since Haru is neither clearly anthropomorphic nor zoomorphic, it is not straightforward what model would be most suitable to drive its behaviors. Our results show that, while participants design different types of behavior depending on their experimental group, it is possible to identify a range of behaviors used by all. This indicates that it is possible to design intuitively understandable reactive behaviors for a novel companion robot whose form has no clear analogue in nature. These behaviors are unique to Haru but contain elements from human and pet animal behaviors.

Keywords

  • Social robot interaction
  • Reactive behaviors
  • Behavior design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62056-1_10
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-62056-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://www.softbankrobotics.com/emea/en/pepper.

  2. 2.

    https://www.softbankrobotics.com/emea/en/nao.

  3. 3.

    https://www.jibo.com/.

References

  1. Haru: An experimental social robot from honda research. http://spectrum.ieee.org/automaton/robotics/home-robots/haru-an-experimental-social-robot-from-honda-research. Accessed: 02 Feb 2020

  2. Admoni, H., Scassellati, B.: Social eye gaze in human-robot interaction: a review. J. Hum.-Robot Interact. 6(1), 25–63 (2017). https://doi.org/10.5898/JHRI.6.1.Admoni

    CrossRef  Google Scholar 

  3. Bisio, A., et al.: Motor contagion during human-human and human-robot interaction. PLoS ONE 9(8), e106172 (2014). https://doi.org/10.1371/journal.pone.0106172

    CrossRef  Google Scholar 

  4. Brooks, R.A.: Elephants don’t play chess. Robot. Auton. Syst. 6(1–2), 3–15 (1990). https://doi.org/10.1016/s0921-8890(05)80025-9

    CrossRef  Google Scholar 

  5. Collins, E.C., Prescott, T.J., Mitchinson, B., Conran, S.: MIRO: a versatile biomimetic edutainment robot. In: Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology - ACE 2015. ACM Press (2015). https://doi.org/10.1145/2832932.2832978

  6. Dubrawski, A., Crowley, J.L.: Learning locomotion reflexes: a self-supervised neural system for a mobile robot. Robot. Auton. Syst. 12(3–4), 133–142 (1994). https://doi.org/10.1016/0921-8890(94)90020-5

    CrossRef  Google Scholar 

  7. Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robot. Auton. Syst. 18(1–2), 59–64 (1996). https://doi.org/10.1016/0921-8890(96)00003-6

    CrossRef  Google Scholar 

  8. Fang, Y., Nakashima, R., Matsumiya, K., Kuriki, I., Shioiri, S.: Eye-head coordination for visual cognitive processing. PLoS ONE 10(3), e0121035 (2015). https://doi.org/10.1371/journal.pone.0121035

    CrossRef  Google Scholar 

  9. Gomez, R., Nakamura, K., Szapiro, D., Merino, L.: A holistic approach in designing tabletop robot’s expressivity. In: Proceedings of the International Conference on Robotics and Automation (2020)

    Google Scholar 

  10. Gomez, R., Szapiro, D., Galindo, K., Nakamura, K.: Haru. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. ACM, February 2018. https://doi.org/10.1145/3171221.3171288

  11. Haraway, D.J.: The Companion Species Manifesto: Dogs, People, and Significant Otherness, vol. 1. Prickly Paradigm Press, Chicago (2003)

    Google Scholar 

  12. Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psychol. 57(2), 243 (1944). https://doi.org/10.2307/1416950

  13. Huang, Q., Nakamura, Y.: Sensory reflex control for humanoid walking. IEEE Trans. Robot. 21(5), 977–984 (2005). https://doi.org/10.1109/tro.2005.851381

    CrossRef  Google Scholar 

  14. Jaynes, J.: Imprinting: the interaction of learned and innate behavior: I. development and generalization. J. Comp. Physiol. Psychol. 49(3), 201 (1956)

    CrossRef  Google Scholar 

  15. Jokinen, K., Nishida, M., Yamamoto, S.: On eye-gaze and turn-taking. In: Proceedings of the 2010 Workshop on Eye Gaze in Intelligent Human Machine Interaction, pp. 118–123. ACM (2010)

    Google Scholar 

  16. Kidd, C., Taggart, W., Turkle, S.: A sociable robot to encourage social interaction among the elderly. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE (2006). https://doi.org/10.1109/robot.2006.1642311

  17. Kwak, S.S., Kim, Y., Kim, E., Shin, C., Cho, K.: What makes people empathize with an emotional robot?: the impact of agency and physical embodiment on human empathy for a robot. In: 2013 IEEE RO-MAN. IEEE, August 2013. https://doi.org/10.1109/roman.2013.6628441

  18. Mukuno, K., et al.: Three types of blink reflex evoked by supraorbital nerve, light flash and corneal stimulations. Jpn. J. Ophthalmol. 27(1), 261–70 (1983)

    Google Scholar 

  19. Nakajima, K., Minami, T,. Nakauchi, S.: Interaction between facial expression and color. Sci. Rep. 7(41019) (2017). https://doi.org/10.1038/srep41019

  20. Nyholm, S.: Attributing agency to automated systems: reflections on human–robot collaborations and responsibility-loci. Sci. Eng. Ethics 24(4), 1201–1219 (2017). https://doi.org/10.1007/s11948-017-9943-x

    CrossRef  Google Scholar 

  21. Park, J.H., Kwon, O.: Reflex control of biped robot locomotion on a slippery surface. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). IEEE (2001). https://doi.org/10.1109/robot.2001.933264

  22. Pavlov, I.P., Gantt, W.: Lectures on conditioned reflexes: twenty-five years of objective study of the higher nervous activity (behaviour) of animals (1928)

    Google Scholar 

  23. Sandry, E.: Robots and Communication. Springer, London (2015). https://doi.org/10.1057/9781137468376

    CrossRef  Google Scholar 

  24. Sciutti, A., et al.: Measuring human-robot interaction through motor resonance. Int. J. Soc. Robot. 4(3), 223–234 (2012). https://doi.org/10.1007/s12369-012-0143-1

    CrossRef  Google Scholar 

  25. Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., Sandini, G.: Robots can be perceived as goal-oriented agents. Interact. Stud. 14(3), 329–350 (2014). https://doi.org/10.1075/is.14.3.02sci

    CrossRef  Google Scholar 

  26. Sciutti, A., Schillingmann, L., Palinko, O., Nagai, Y., Sandini, G.: A gaze-contingent dictating robot to study turn-taking. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts - HRI 2015 Extended Abstracts. ACM Press (2015). https://doi.org/10.1145/2701973.2702055

  27. Snowden, R., Snowden, R., Thompson, P., Troscianko, T.: Basic Vision: An Introduction to Visual Perception. OUP Oxford (2012)

    Google Scholar 

  28. Thellman, S., Ziemke, T.: The intentional stance toward robots: conceptual and methodological considerations. In: The 41st Annual Conference of the Cognitive Science Society, 24–26 July, pp. 1097–1103, Montreal (2019)

    Google Scholar 

  29. Tierney, A.J.: The evolution of learned and innate behavior: contributions from genetics and neurobiology to a theory of behavioral evolution. Anim. Learn. Behav. 14(4), 339–348 (1986). https://doi.org/10.3758/BF03200077

    CrossRef  Google Scholar 

  30. Yoshikawa, Y., Shinozawa, K., Ishiguro, H., Hagita, N., Miyamoto, T.: The effects of responsive eye movement and blinking behavior in a communication robot. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4564–4569. IEEE (2006)

    Google Scholar 

  31. Ziemke, T., Thill, S.: Robots are not embodied! conceptions of embodiment and their implications for social human-robot interaction. In: Proceedings of Robo-Philosophy 2014: Sociable Robots and the Future of Social Relations, pp. 49–53. IOS Press BV, Amsterdam (2014). https://doi.org/10.3233/978-1-61499-480-0-49

  32. Ziemke, T., Thill, S., Vernon, D.: Embodiment is a double-edged sword in human-robot interaction: ascribed vs. intrinsic intentionality. In: Cognition as a Bridge Between Robotics and Interaction workshop in Conjunction with HRI2015 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Vasylkiv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Vasylkiv, Y. et al. (2020). An Exploration of Simple Reactive Responses for Conveying Aliveness Using the Haru Robot. In: , et al. Social Robotics. ICSR 2020. Lecture Notes in Computer Science(), vol 12483. Springer, Cham. https://doi.org/10.1007/978-3-030-62056-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62056-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62055-4

  • Online ISBN: 978-3-030-62056-1

  • eBook Packages: Computer ScienceComputer Science (R0)