Skip to main content

Space Adaptive Methods/Meshing

  • Chapter
  • First Online:
TILDA: Towards Industrial LES/DNS in Aeronautics

Abstract

This chapter describes space adaptive approaches developed by six TILDA partners for the application in scale-resolving simulations. They are designed to provide sufficient spatial resolution in regions where required and to allow a lower resolution elsewhere for efficiency reasons. Adaptation techniques considered include mesh (h-refinement), order refinement of the spatial discretization (p-refinement) or a combination of both (hp-refinement). Furthermore, near-wall local mesh refinement, refinement using feature-based indicators and indicators obtained from the Variational Multiscale Method are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As pointed out in [66], in order to reduce the sensitivity of the error estimators to the local mesh size, the SSED indicator is here normalized by the square root of the element volume while the residual-based indicator is normalized by the characteristic element size.

References

  1. F. Bassi, L. Botti, A. Colombo, A. Crivellini, A. Ghidoni, A. Nigro, S. Rebay, Time integration in the discontinuous Galerkin code MIGALE—unsteady problems, in IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach (Springer, Berlin, 2015), pp. 205–230

    Google Scholar 

  2. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. (Elsevier) 231(1), 45–65 (2012)

    Google Scholar 

  3. J. Gottlieb, C. Groth, Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases. J. Comput. Phys. (Elsevier) 78(2), 437–458 (1988)

    Google Scholar 

  4. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ed. by R. Decuypere, G. Dibelius (Technologisch Instituut, Antwerpen, Belgium, 1997), pp. 99–108, 5–7 Mar 1997

    Google Scholar 

  5. F. Bassi, L. Botti, A. Colombo, A. Ghidoni, F. Massa, Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids (Elsevier) 118, 305–320 (2015)

    Google Scholar 

  6. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page (2018), http://www.mcs.anl.gov/petsc

  7. J. Lang, J. Verwer, ROS3P—an accurate third-order Rosenbrock solver designed for parabolic problems. BIT 41(4), 731–738 (2001)

    Article  MathSciNet  Google Scholar 

  8. R.J. Spiteri, S.J. Ruuth, SIAM, A new class of optimal high-order strong-stability-preserving time discretization methods. J. Numer. Anal. 40(2), 469–491 (2002). ISSN 0036-1429 (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA)

    Google Scholar 

  9. P. Tesini, An h-multigrid approach for high-order discontinuous Galerkin methods. Ph.D. Thesis, Università degli Studi di Bergamo (2008)

    Google Scholar 

  10. A. Ghidoni, E. Pelizzari, S. Rebay, V. Selmin, 3D anisotropic unstructured grid generation. Int. J. Numer. Methods Fluids 51(9–10), 1097–1115 (2006)

    Article  Google Scholar 

  11. L. Krivodonova, J. Xin, J.F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. (Elsevier) 48(3–4), 323–338 (2004)

    Google Scholar 

  12. G. Gassner, M. Staudenmaier, F. Hindenlang, M. Atak, C.D. Munz, A space-time adaptive discontinuous Galerkin scheme. Comput. Fluids 117, 247–261 (2015). https://doi.org/10.1016/j.compfluid.2015.05.002. http://www.sciencedirect.com/science/article/pii/S0045793015001498. ISSN 0045-7930

  13. P.O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in 44th AIAA Aerospace Sciences Meeting and Exhibit (2006), p. 112

    Google Scholar 

  14. G. Karypis, V. Kumar, METIS: Unstructured graph partitioning and sparse matrix ordering system, version 5.0. Technical report (2009), http://www.cs.umn.edu/~metis

  15. M. Langari, Z. Yang, Numerical study of the primary instability in a separated boundary layer transition under elevated free-stream turbulence. Phys. Fluids 25(7), 074106 (2013). https://doi.org/10.1063/1.4816291

  16. Z. Yang, P.R. Voke, Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. (Cambridge University Press) 439, 305–333 (2001). https://doi.org/10.1017/S0022112001004633

  17. E. Lamballais, J. Silvestrini, S. Laizet, Direct numerical simulation of flow separation behind a rounded leading edge: Study of curvature effects. Int. J. Heat Fluid Flow 31(3), 295–306 (2010). Sixth International Symposium on Turbulence and Shear Flow Phenomena

    Google Scholar 

  18. M. Franciolini, L. Botti, A. Colombo, A. Crivellini, p-Multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows, arXiv:1809.00866 (2018)

  19. F. Bassi, A. Crivellini, D.D. Pietro, S. Rebay, An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006). https://doi.org/10.1016/j.jcp.2006.03.006. http://www.sciencedirect.com/science/article/pii/S0021999106001331. ISSN 0021-9991

  20. M.S. Boutilier, S. Yarusevych, Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids (AIP) 24(8), 084105 (2012)

    Google Scholar 

  21. A. Crivellini, V. D’Alessandro, Spalart-Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils. Int. J. Heat Fluid Flow 47, 70–83 (2014). https://doi.org/10.1016/j.ijheatfluidflow.2014.03.002. http://www.sciencedirect.com/science/article/pii/S0142727X14000344. ISSN 0142-727X

  22. M.S.H. Boutilier, S. Yarusevych, Separated shear layer transition over an airfoil at a low Reynolds number. J. Fluid Mech. 24 (2012)

    Google Scholar 

  23. S.H. Peng, M. Strelets, Test case ST12, Boeing rudimentary landing gear. ATAAC (2012)

    Google Scholar 

  24. A. Uranga, P.O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Num. Methods Eng. 87, 232–261 (2011)

    Article  MathSciNet  Google Scholar 

  25. A. Beck, T. Bolemann, D. Flad, H. Frank, G. Gassner, F. Hindenlang, C. Munz, High order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)

    Article  MathSciNet  Google Scholar 

  26. C. Carton de Wiart, K. Hillewaert, L. Bricteux, G. Winckelmans, Implicit LES of free and wall bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78(6), 335–354 (2014). https://doi.org/10.1002/fld.4021

    Article  MathSciNet  Google Scholar 

  27. G. Compère, Mesh adaption with large deformations: theory, algorithms and implementation. Ph.D. thesis, Université Catholique de Louvain, École Polytechnique de Louvain, Institut de Mécanique, Matériaux et Génie Civil, Belgium (2009)

    Google Scholar 

  28. P. Frey, About surface remeshingin 9th International Meshing Roundtable (2000), pp. 123–136

    Google Scholar 

  29. P. Laug, Contribution à la génération automatique de maillages de qualité pour la simulation numérique (Université Pierre et Marie Curie, Paris VI, Habilitation à Diriger des Recherches en Mathématiques, 2016)

    Google Scholar 

  30. R. Löhner, Mesh adaptation in fluid mechanics. Eng. Fract. Mech. 50, 819–847 (1995)

    Article  Google Scholar 

  31. O. Zienkiewicz, J. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Article  Google Scholar 

  32. O. Zienkiewicz, J. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptativity. Int. J. Numer. Methods Eng. 33, 1365–1382 (1992)

    Article  Google Scholar 

  33. E.V.F. Fraysse, J. de Vicente, The estimation of truncation error by \(\tau \)-estimation revisited. J. Comput. Phys. 231, 3457–3482 (2012)

    Article  MathSciNet  Google Scholar 

  34. E.V.F. Fraysse, J. Posín, Comparison of mesh adaptation using the adjoint methodology and truncation error estimates. AIAA J. 50, 1920–1932 (2012)

    Article  Google Scholar 

  35. X.D. Zhang, J. Trepanier, R. Camarero, A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 185, 1–19 (2000)

    Article  MathSciNet  Google Scholar 

  36. C. Roy, Strategies for driving mesh adaptation in CFD, in 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (2009). AIAA-2009-1302

    Google Scholar 

  37. C. Roy, Review of discretization error estimators in scientific computing, in 48th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (2010). AIAA-2010-126

    Google Scholar 

  38. C. Mavriplis, A posteriori error estimators for adaptive spectral element techniques, in Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics, pp. 333–342 (1990)

    Google Scholar 

  39. J.F.S. Adjerid, K. Devine, L. Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Google Scholar 

  40. L. Krivodonova, J. Flaherty, Error estimation for discontinuous Galerkin solutions of multidimensional hyperbolic problems. Adv. Comput. Math. 19, 57–71 (2003)

    Article  MathSciNet  Google Scholar 

  41. R. Becker, R. Rannacher, Optimal control approach to a posteriori error estimation in finite element methods, in Acta Numerica (Cambridge University Press, Cambridge, MA, 2001)

    Google Scholar 

  42. M. Giles, N. Pierce, Adjoint error correction for integral outputs, in Lecture Notes in Computational Science and Engineering: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, vol. 25. (Springer, Berlin, 2002)

    Google Scholar 

  43. N.A. Pierce, M.B. Giles, Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys. 20, 769–794 (2004)

    Article  MathSciNet  Google Scholar 

  44. K.J. Fidkowski, D. Darmofal, Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49, 673–694 (2011)

    Article  Google Scholar 

  45. T. Barth, M. Larson, A posteriori error estimates for higher order Godunov finite volume methods on unstructured meshes, in Finite Volumes for Complex Applications III, ed. by R. Herban, D. Kröner (Hermes Penton, London, 2002), pp. 41–63

    Google Scholar 

  46. D.A. Venditti, D.L. Darmofal, Grid adaptation for functional outputs: application to two-dimensional inviscid flows. J. Comput. Phys. 176, 40–69 (2002)

    Article  MathSciNet  Google Scholar 

  47. D.A. Venditti, D.L. Darmofal, Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. J. Comput. Phys. 187, 22–46 (2003)

    Article  Google Scholar 

  48. J. Lu, An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method. Ph.D. thesis, Massachusetts Institute of Technology (2005). Adjoint problem based error estimation framework

    Google Scholar 

  49. R. Hartmann, P. Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183, 508–532 (2002)

    Article  MathSciNet  Google Scholar 

  50. R. Hartmann, T. Leicht, Higher order and adaptive DG methods for compressible flows, in VKI LS 2014-03: 37th Advanced VKI CFD Lecture Series: Recent developments in higher order methods and industrial application in aeronautics, Dec. 9–12, 2013, ed. by H. Deconinck (Von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 2014)

    Google Scholar 

  51. J. Krakos, Unsteady adjoint analysis for output sensitivity and mesh adaptation. Ph.D. thesis (Massachusetts Institute of Technology,Cambridge, MA, 2012)

    Google Scholar 

  52. Q. Wang, R. Hu, P. Blonigan, Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. J. Comput. Phys. 267, 210–224 (2014). ISSN 0021-9991

    Google Scholar 

  53. P. Blonigan, S. Gomez, Q.Wang, Least squares shadowing for sensitivity analysis of turbulent fluid flows, in 52nd Aerospace Sciences Meeting, AIAA SciTech Forum (2014). AIAA 2014-1426

    Google Scholar 

  54. F.J. Geurts BJ, A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14, L41–L44 (2002)

    Google Scholar 

  55. S. Pope, Turbulent Flows (Cambridge University Press, 2000). ISBN 9780521598866

    Google Scholar 

  56. P. Benard, G. Balarac, V. Moureau, C. Dobrzynski, G. Lartigue, Y. D’Angelo, Mesh adaptation for large-eddy simulations in complex geometries. Int. J. Numer. Methods Fluids 81(12), 719–740 (2016). Fld.4204

    Google Scholar 

  57. G. Daviller, M. Brebion, P. Xavier, G. Staffelbach, J.D. Müller, T. Poinsot, A mesh adaptation strategy to predict pressure losses in LES of swirled flows. Flow, Turbul. Combust. 99(1), 93–118 (2017). https://doi.org/10.1007/s10494-017-9808-z. ISSN 1573-1987

  58. K. Hillewaert, J. Cagnone, S. Murman, A. Garai, L. Yu, M. Ihme, Assessement of high order DG methods for LES of free stream transonic turbulence, in Proceedings of the Summer Program 2016 (Stanford University, Center for Turbulence Research, 2016)

    Google Scholar 

  59. 3rd International Worskhop on High-Order CFD methods, Orlando, Florida, 3–4 Jan 2015. (2015), https://www.grc.nasa.gov/hiocfd

  60. https://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-30_Test_Case (2013)

  61. G. Kuru, M. de la Llave Plata, V. Couaillier, R. Abgrall, F. Coquel, An adaptive variational multiscale discontinuous Galerkin method for large eddy simulation, in 54th AIAA Aerospace Sciences Meeting, San Diego, California (AIAA, 2016)

    Google Scholar 

  62. G. Tumolo, L. Bonaventura, M. Restelli, A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations. J. Comput. Phys. 232(1), 46–67 (2013) (Elsevier)

    Google Scholar 

  63. G. Gassner, C. Altmann, F. Hindenlang, M. Staudenmeier, C. Munz, Explicit discontinuous Galerkin schemes with adaptation in space and time, in36th CFD/ADIGMA course on hp-adaptive and hp-multigrid methods, VKI LS (2009)

    Google Scholar 

  64. R. Hartmann, J. Held, T. Leicht, F. Prill, Error estimation and adaptive mesh refinement for aerodynamic flows, in ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications (Springer, Berlin, 2010), pp. 339–353

    Google Scholar 

  65. V. Dolejší, hp-DGFEM for nonlinear convection-diffusion problems. Math. Comput. Simul. 87, 87–118 (2013)

    Article  MathSciNet  Google Scholar 

  66. F. Naddei, M. de la Llave Plata, V. Couaillier, F. Coquel, A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods. J. Comput. Phys. (Elsevier) 376, 508–533 (2019)

    Google Scholar 

  67. M. Breuer, A challenging test case for large-eddy-simulation: high Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21(5), 648–654 (2000)

    Article  Google Scholar 

  68. B. Cantwell, D. Coles, An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid. Mech. 136, 321–374 (1983)

    Article  Google Scholar 

  69. J. Son, T. Hanratty, Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from \(5\times 10^3\) to \(10^5\). J. Fluid Mech. 35, 353–368 (1969)

    Google Scholar 

  70. P. Parnaudeau, J. Carlier, D. Heitz, E. Lamballais, Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008)

    Google Scholar 

  71. S. Karabelas, LES of high-Reynolds number flow past a rotating cylinder. Int. J. Heat Fluid Flow 31(4), 518–527 (2010)

    Article  Google Scholar 

  72. H.J. Clercx, C.H. Bruneau, The normal and oblique collision of a dipole with a no-slip boundary. Comput. Fluids (Elsevier) 35(3), 245–279 (2006)

    Google Scholar 

  73. G.H. Keetels, U. D’Ortona, W. Kramer, H.J. Clercx, K. Schneider, G.J. van Heijst, Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume-penalization: convergence of a dipole–wall collision. J. Comput. Phys. (Elsevier) 227(2), 919–945 (2007)

    Google Scholar 

  74. M. Lorteau, E. Martin, Stratégie Load-Balancing Pour Ordre Variable. Technical report, ELCI (2017)

    Google Scholar 

  75. D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244 (1996). ISSN 0021-9991

    Google Scholar 

  76. Y. Sun, Z. Wang, Y. Liu, High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)

    MathSciNet  MATH  Google Scholar 

  77. D.A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II: a semi-structured method. J. Comput. Phys. 128, 29 (1996)

    Article  Google Scholar 

  78. Y. Maday, C. Mavriplis, A. Patera, Nonconforming mortar element methods: application to spectral discretizations, in Domain Decomposition Methods (SIAM, Philadelphia, 1988), pp. 392–418

    Google Scholar 

  79. I. Marter, Handling different h and p refinements in the framework of Spectral Difference method. Master’s thesis (Université Pau et Pays de l’Adour, 2013)

    Google Scholar 

  80. D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations. J. Comput. Phys. 143(1), 125–158 (1998). ISSN 0021-9991

    Google Scholar 

  81. F. Naddei, M. de la Llave Plata, V. Couaillier, A comparison of refinement indicators for p-adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations, in 2018 AIAA Aerospace Sciences Meeting (2018), p. 368

    Google Scholar 

  82. E. Ching, Y. Lv, M. Ihme, Entropy residual as a feature-based adaptation indicator for simulations of unsteady flow, in 54th AIAA Aerospace Sciences Meeting (2016), p. 837

    Google Scholar 

  83. Z.J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert, H.T. Huynh et al., High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids (Wiley Online Library) 72(8), 811–845 (2013)

    Google Scholar 

  84. H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, in 18th AIAA Computational Fluid Dynamics Conference (American Institute of Aeronautics and Astronautics. AIAA Paper 2007-4079, Miami, FL, 2007)

    Google Scholar 

  85. B. Vermeire, P. Vincent, On the behaviour of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. (Elsevier) 315, 1053–1079 (2017)

    Google Scholar 

  86. N. Adams, S. Hickel, S. Franz, Implicit subgrid-scale modeling by adaptive deconvolution. J. Comput. Phys. 200(2), 412–431 (2004)

    Article  MathSciNet  Google Scholar 

  87. L. Yanan, Z. Wang, A priori and a posteriori evaluations of subgrid stress models with the Burgers’ equation, in 53rd AIAA Aerospace Sciences Meeting. AIAA Paper 2015-1283 (American Institute of Aeronautics and Astronautics, Kissimmee, FL, 2015)

    Google Scholar 

  88. R. Moura, S. Sherwin, J. Peiró, Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    Article  MathSciNet  Google Scholar 

  89. P.E. Vincent, A.M. Farrington, F.D. Witherden, A. Jameson, An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015)

    Article  MathSciNet  Google Scholar 

  90. B.C. Vermeire, S. Nadarajah, P.G. Tucker, Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme. Int. J. Numer. Methods Fluids (Wiley Online Library) 82(5), 231–260 (2016)

    Google Scholar 

  91. Z. Wang, K. Fidkowski, R. Abgrall, D. Caraeni, F. Bassi, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert, H.T. Huynh, N. Kroll, G. May, P. Persson, B. van Leer, M. Visbal, High-order CFD methods: current status and perspective (Wiley Online Library). Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

    Google Scholar 

  92. M.R. Visbal, R.E. Gordnier, M.C. Galbraith, High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers. Exp. Fluids 46(5), 903–922 (2009). ISSN 0723-4864, 1432-1114

    Google Scholar 

  93. D.J. Garmann, M.R. Visbal, P.D. Orkwis, Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds number airfoil applications. Int. J. Numer. Methods Fluids 71(12), 1546–1565 (2013)

    Article  MathSciNet  Google Scholar 

  94. A. Beck, T. Bolemann, D. Flad, H. Frank, G. Gassner, F. Hindenlang, C. Munz, High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)

    Article  MathSciNet  Google Scholar 

  95. B.C. Vermeire, F.D. Witherden, P.E. Vincent, On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with industry-standard tools. J. Comput. Phys. (Elsevier) 334, 497–521 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartmann, R. et al. (2021). Space Adaptive Methods/Meshing. In: Hirsch, C., et al. TILDA: Towards Industrial LES/DNS in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-030-62048-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62048-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62047-9

  • Online ISBN: 978-3-030-62048-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics