Skip to main content

Computational Campaign on the MTU T161 Cascade

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM,volume 148)

Abstract

Preliminary high-fidelity simulations of the MTU T161 low pressure turbine cascade with diverging end walls have been performed on massively parallel computational resources with four different high-order methods at outlet isentropic Mach number \(M_{2s}=0.601\) and two outlet isentropic Reynolds numbers, namely \(Re_{2s}=90\,\text {K}\) and \(Re_{2s}=200\,\text {K}\). First the flow regime and the boundary conditions are thoroughly described. The implementation of each method is then briefly introduced before the main results are presented. The main flow features of this test case have been qualitatively highlighted by these simulations. However, discrepancies have been observed quantitatively in terms of separation point on the suction side of the blade, especially at the lowest Reynolds. These simulations relied mainly on a laminar boundary layer at the inlet of the domain, which is likely the root cause of the observed discrepancies. Additional simulations with turbulent boundary layer imposed at the inlet are required to characterize the flow separation based on the turbulence intensity at the inlet.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62048-6_18
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-62048-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

References

  1. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)

    MathSciNet  CrossRef  Google Scholar 

  2. F. Bassi, L. Botti, A. Colombo, A. Ghidoni, F. Massa, Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids 118, 305–320 (2015)

    MathSciNet  CrossRef  Google Scholar 

  3. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Antwerpen, Belgium, 5–7 March 1997, ed. by R. Decuypere, G. Dibelius. Technologisch Instituut, pp. 99–108

    Google Scholar 

  4. C. Carton de Wiart, K. Hillewaert, A discontinuous Galerkin method for implicit LES of moderate Reynolds number flows, in AIAA SciTech, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 2015

    Google Scholar 

  5. C. Carton de Wiart, K. Hillewaert, L. Bricteux, G. Winckelmans, Implicit LES of free and wall bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78(6), 335–354 (2014). https://doi.org/10.1002/fld.4021

  6. C. Carton de Wiart, K. Hillewaert, M. Duponcheel, G. Winckelmans, Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. Int. J. Numer. Meth. Fluids 74, 469–493 (2013). https://doi.org/10.1002/fld.3859

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. P. Castonguay, D.M. Williams, P.E. Vincent, A. Jameson, Energy stable flux reconstruction schemes for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 267, 400–417 (2013)

    MathSciNet  CrossRef  Google Scholar 

  8. G. Di Marzo, RODAS5(4) - Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques. M.Sc. Mathematics Thesis, Faculty of Science, University of Geneva, Switzerland 1993

    Google Scholar 

  9. N. Fabian, K. Moreland, D. Thompson, A.C. Bauer, P. Marion, B. Gevecik, M. Rasquin, K.E. Jansen, The paraview coprocessing library: a scalable, general purpose in situ visualization library, in 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV) (IEEE, 2011), pp. 89–96

    Google Scholar 

  10. M. Franciolini, L. Botti, A. Colombo, A. Crivellini, \(p\)-multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows (2019), arXiv:1809.00866

  11. C. Geuzaine, J.-F. Remacle, Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

    MathSciNet  CrossRef  Google Scholar 

  12. J.J. Gottlieb, C.P.T. Groth, Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases. J. Comput. Phys. 78, 437–458 (1988)

    CrossRef  Google Scholar 

  13. J. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications (Spinger, 2008)

    Google Scholar 

  14. H.T. Hyunh. A flux reconstruction approach to high-order schemes including discontinuous galerkin methods, in 18th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, Miami, Florida, 2007, p. 4079

    Google Scholar 

  15. M. Martinstetter, Experimentelle Untersuchungen zur Aerodynamik hoch belasteter Niederdruckturbinen-Beschaufelungen. Ph.D. Thesis, Universiät der Bundeswehr München, München, Deutchland, 4 2010

    Google Scholar 

  16. F. Massa, G. Noventa, M. Lorini, F. Bassi, A. Ghidoni, High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. Comput. Fluids (2018)

    Google Scholar 

  17. A. Nigro, C. De Bartolo, F. Bassi, A. Ghidoni, Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin discretized Navier–Stokes equations. J. Comput. Phys. (2014)

    Google Scholar 

  18. A. Nigro, A. Ghidoni, S. Rebay, F. Bassi, Modified Extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows. Int. J. Numer Methods Fluids 2014

    Google Scholar 

  19. M. Rasquin, A. Bauer, K. Hillewaert, Scientific post hoc and in situ visualisation of high-order polynomial solutions from massively parallel, simulations. Int. J. Comput. Fluid Dyn. 33(4), 171–180 (2019)

    MathSciNet  CrossRef  Google Scholar 

  20. P.E. Vincent, P. Castonguay, A. Jameson, A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    Google Scholar 

  21. P. Vincent, F. Witherden, B. Vermeire, J.S. Park, A. Iyer, Towards green aviation with Python at Petascale, in SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2016)

    Google Scholar 

  22. F.D. Witherden, A.M. Farrington, P.E. Vincent, PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Comput. Phys. Commun. 185(11), 3028–3040 (2014)

    CrossRef  Google Scholar 

  23. B.D. Wozniak, F.D. Witherden, F.P. Russell, P.E. Vincent, P.H.J. Kelly, Gimmik-generating bespoke matrix multiplication kernels for accelerators: application to high-order computational fluid dynamics. Comput. Phys. Commun. 202, 12–22 (2016)

    Google Scholar 

Download references

Acknowledgements

We first of all acknowledge Dr. Rolf-Dietmar Baier and Dr. Patrick Bechlars for making the geometry and measurements available. The teams at Cenaero, the university of Bergamo and Numeca furthermore acknowledge PRACE for awarding us access to MareNostrum at Barcelona Supercomputing Center (BSC), Spain, under the FullStuP (high-fidelity LES/DNS simulation of Full-Span Turbine Passage) project. Compute resources on Titan at Oak Ridge National Laboratory were provided to Imperial College under award ARD121 via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC02-06CH11357. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. Cenaero furthermore benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n\(^\circ \) 1117545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rasquin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rasquin, M. et al. (2021). Computational Campaign on the MTU T161 Cascade. In: , et al. TILDA: Towards Industrial LES/DNS in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-030-62048-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62048-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62047-9

  • Online ISBN: 978-3-030-62048-6

  • eBook Packages: EngineeringEngineering (R0)