Skip to main content

The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis

  • Chapter
  • First Online:
Ferroptosis: Mechanism and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1301))

Abstract

Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin, the cytosolic iron storage complex, in a process known as ferritinophagy. NCOA4-mediated ferritinophagy is required to maintain intracellular and systemic iron homeostasis and thereby iron-dependent physiologic processes such as erythropoiesis. Given this role of ferritinophagy in regulating iron homeostasis, modulating NCOA4-mediated ferritinophagic flux alters sensitivity to ferroptosis, a non-apoptotic iron-dependent form of cell death triggered by peroxidation of polyunsaturated fatty acids (PUFAs). A role for ferroptosis has been established in the pathophysiology of cancer and neurodegeneration; however, the importance of ferritinophagy in these pathologies remains largely unknown. Here, we review the available evidence on biochemical regulation of NCOA4-mediated ferritinophagy and its role in modulating sensitivity to innate and induced ferroptosis in neurodegenerative diseases and cancer. Finally, we evaluate the potential of modulating ferritinophagy in combination with ferroptosis inducers as a therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxynonenal

AD:

Alzheimer’s Disease

AP-MS:

Affinity-Purification Mass Spectrometry

ATG8:

Autophagy-Related Protein 8

BSO:

Buthionine Sulfoximine

COPD:

Chronic Obstructive Pulmonary Disease

DFO :

Deferoxamine

DMT1:

Divalent Metal Transporter 1

DNA:

Deoxyribonucleic Acid

ESCRT:

Endosomal Sorting Complex Required for Transport

Fe:

Iron

FPN:

Ferroportin

FTH1:

Ferritin Heavy Chain

FTL:

Ferritin Light Chain

GPX4 :

Glutathione Peroxidase 4

GSH :

Glutathione

H2O2:

Hydrogen Peroxide

HD:

Huntington’s Disease

HERC2:

HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 2

HSCs:

Hepatic Stellate Cells

IREB2:

Iron Response Element Binding Protein 2

LA:

α-Lipoic acid

LIP:

Labile Iron Pool

LOX:

Lipoxygenase

MCAO :

Middle Cerebral Artery Occlusion

MEFs:

Mouse Embryonic Fibroblasts

NCOA4:

Nuclear Receptor Co-Activator 4

NEURL4 :

Neuralized E3 Ubiquitin Protein Ligase 4

NF:

Neuroferritinopathy

PD:

Parkinson’s Disease

PUFA:

Polyunsaturated Fatty Acid

ROS :

Reactive Oxygen Species

RSL3 :

RAS-Selective Lethal 3

SILAC:

Stable Isotopic Labeling with Amino Acids in Cell Culture

SLC7A11:

Solute Carrier Family 7 Member 11

TF:

Transferrin

TFRC:

Transferrin Receptor

xCT:

Cystine/Glutamate Transporter

References

  • Abdalkader M, Lampinen R, Kanninen KM et al (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  • Alen P, Claessens F, Schoenmakers E et al (1999) Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform. Mol Endocrinol 13:117–128

    CAS  PubMed  Google Scholar 

  • Alvarez SW, Sviderskiy VO, Terzi EM et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Komatsu M, Yamaguchi-Iwai Y et al (2011) Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol 31:2040–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri A (2019) The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am 103:263–293

    Article  PubMed  Google Scholar 

  • Ayton S, Faux NG, Bush AI et al (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760

    Article  CAS  PubMed  Google Scholar 

  • Badgley MA, Kremer DM, Maurer HC et al (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basuli D, Tesfay L, Deng Z et al (2017) Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36:4089–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates GP, Dorsey R, Gusella JF et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005

    Article  PubMed  Google Scholar 

  • Bellelli R, Castellone MD, Guida T et al (2014) NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol Cell 55:123–137

    Article  CAS  PubMed  Google Scholar 

  • Bellelli R, Federico G, Matte A et al (2016) NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep 14:411–421

    Article  CAS  PubMed  Google Scholar 

  • Bellinger FP, Bellinger MT, Seale LA et al (2011) Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson’s brain. Mol Neurodegener 6:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bersuker K, Hendricks J, Li Z et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

    Article  PubMed  Google Scholar 

  • Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41:274–286

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    Article  PubMed  CAS  Google Scholar 

  • Brown C, Amante J, Chhoy P et al (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163

    Article  CAS  PubMed  Google Scholar 

  • Camaschella C (2015) Iron-deficiency anemia. N Engl J Med 372:1832–1843

    Article  PubMed  Google Scholar 

  • Cardoso BR, Hare DJ, Bush AI, Roberts BR (2017) Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry 22:328–335

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Chiang S, Chen S et al (2018) Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett 416:124–137

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Marks E, Lai B et al (2013) Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 8:e77023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Hambright WS, Na R, Ran Q (2015) Ablation of ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 290:28097–28106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-Q, Benthani FA, Wu J et al (2019a) Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 27:242–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen P, Wu J, Ding C et al (2019b) Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 27:1008–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cozzi A, Rovelli E, Frizzale G et al (2010) Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis 37:77–85

    Article  CAS  PubMed  Google Scholar 

  • Cozzi A, Orellana DI, Santambrogio P et al (2019) Stem cell reports article stem cell modeling of neuroferritinopathy reveals iron as a determinant of senescence and ferroptosis during neuronal aging. Stem Cell Rep 13:832–846

    Article  CAS  Google Scholar 

  • Daher B, Parks SK, Durivault J et al (2019) Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res 79:3877–3890

    Article  CAS  PubMed  Google Scholar 

  • De Domenico I, Vaughn MB, Li L et al (2006) Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25:5396–5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lee AJ et al (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD et al (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Stockwell BR (2019) The hallmarks of ferroptosis. Annu Rev Cancer Biol 3:35–54

    Article  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do Van B, Gouel F, Jonneaux A et al (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  PubMed  CAS  Google Scholar 

  • Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

    Article  CAS  PubMed  Google Scholar 

  • Dowdle WE, Nyfeler B, Nagel J et al (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan Z, Wirth A-K, Chen D et al (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6:e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Jin Y, Hall KS et al (2007) Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165:955–965

    Article  PubMed  Google Scholar 

  • Gao M, Monian P, Pan Q et al (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Lee H, Li W et al (2017) Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. PNAS 114:10107–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin JM, Dowdle WE, DeJesus R et al (2017) Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep 20:2341–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grazia Cotticelli M, Xia S, Lin D et al (2019) Ferroptosis as a novel therapeutic target for Friedreich’s ataxia. J Pharmacol Exp Ther 369:47–54

    Article  PubMed  CAS  Google Scholar 

  • Gryzik M, Srivastava A, Longhi G et al (2017) Expression and characterization of the ferritin binding domain of nuclear receptor coactivator-4 (NCOA4). Biochim Biophys Acta 1861:2710–2716

    Article  CAS  Google Scholar 

  • Guo JY, Chen HY, Mathew R et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Wang P, Zhong M-L et al (2013) Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int 62:165–172

    Article  CAS  PubMed  Google Scholar 

  • Hager K, Kenklies M, McAfoose J et al (2007) α-Lipoic acid as a new treatment option for Alzheimer’s disease – a 48 months follow-up analysis. J Neural Transm Suppl 2007:189–193

    Google Scholar 

  • Hambright WS, Fonseca RS, Chen L et al (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Viswanathan VS, Ryan MJ et al (2017) Drug tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassannia B, Wiernicki B, Ingold I et al (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341–3355

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Xie Y, Song X et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo Y, Cai H, Teplova I et al (2013) Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2 -associated hereditary breast cancer. Cancer Discov 3:894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingold I, Berndt C, Schmitt S et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172:409–412

    Article  CAS  PubMed  Google Scholar 

  • Kajarabille N, Latunde-Dada G (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci 20:E4968

    Article  PubMed  CAS  Google Scholar 

  • Kakhlon O, Gruenbaum Y, Cabantchik Z (2002) Repression of ferritin expression modulates cell responsiveness to H-ras-induced growth. Biochem Soc Trans 30:777–780

    Article  CAS  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  CAS  PubMed  Google Scholar 

  • Kidane TZ, Sauble E, Linder MC et al (2006) Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol 291:445–455

    Article  CAS  Google Scholar 

  • Klepac N, Relja M, Klepac R et al (2007) Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. J Neurol 254:1676–1683

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Liu R, Cheng Y (2019) Artesunate alleviates liverfibrosis by regulating ferroptosis signalingpathway. Biomed Pharmacother 109:2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Kwok JC, Richardson DR (2004) Examination of the mechanism(s) involved in doxorubicin-mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents. Mol Pharmacol 65:181–195

    Article  CAS  PubMed  Google Scholar 

  • Lang X, Green MD, Wang W et al (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannfelt L, Blennow K, Zetterberg H et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  • Larson JA, Howie HL, So M (2004) Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol 53:807–820

    Article  CAS  PubMed  Google Scholar 

  • Lazova R, Camp RL, Klump V et al (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18:370–379

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kosaras B, Del Signore SJ et al (2011) Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol 121:487–498

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Han X, Lan X et al (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2:e90777

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wang K (2019) The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int 43:1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Liuzzi J, Aydemir F, Nam H et al (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103:13612–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lock R, Roy S, Kenific CM et al (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Liu X, Tian Y et al (2019) Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019:1–10

    Google Scholar 

  • Lumsden AL, Rogers JT, Majd S et al (2018) Dysregulation of neuronal iron homeostasis as an alternative unifying effect of mutations causing familial alzheimer’s disease. Front Neurosci 12:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:1–11

    Article  Google Scholar 

  • Mancias JD, Kimmelman AC (2016) Mechanisms of selective autophagy in normal physiology and cancer. J Mol Biol 428:1659–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancias JD, Wang X, Gygi SP et al (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancias JD, Vaites LP, Nissim S et al (2015) Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. elife 4:e10308

    Article  PubMed Central  Google Scholar 

  • Martin-Bastida A, Ward RJ, Newbould R et al (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 7:1398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masaldan S, Clatworthy SAS, Gamell C et al (2018) Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 14:100–115

    Article  CAS  PubMed  Google Scholar 

  • Mejlvang J, Olsvik H, Svenning S et al (2018) Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 217:3640–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad R, Muqbil I, Lowe L et al (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35(Suppl):S78–S103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monti DA, Zabrecky G, Kremens D et al (2016) N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLoS One 11:e0157602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montine TJ, Neely MD, Quinn JF et al (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33:620–626

    Article  CAS  PubMed  Google Scholar 

  • Moreau C, Danel V, Devedjian JC et al (2018) Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis? Antioxid Redox Signal 29:742–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Y, Wang J, Wu J et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12:34–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 168:344–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M, Leavitt BR (2014) Iron dysregulation in Huntington’s disease. J Neurochem 130:328–350

    Article  CAS  PubMed  Google Scholar 

  • Öllinger K, Roberg K (1997) Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide. J Biol Chem 272:23707–23711

    Article  PubMed  Google Scholar 

  • Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L (2012) Mechanisms of mammalian iron homeostasis. Biochemistry 51:5705–5724

    Article  CAS  PubMed  Google Scholar 

  • Pedersen WA, Fu W, Keller JN et al (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44:819–824

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Li C, Chen F et al (2008) Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. Am J Pathol 172:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson HL, Svensson AI, Brunk UT (2001) Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis. Redox Rep 6:327–334

    Article  CAS  PubMed  Google Scholar 

  • Pinnix ZK, Miller LD, Wang W et al (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2:43ra56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  • Quinti L, Naidu SD, Träger U et al (2017) KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington’s disease patients. PNAS 114:E4676–E4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radisky D, Kaplan J (1998) Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem J 336:201–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockfield S, Flores I, Nanjundan M (2018) Expression and function of nuclear receptor coactivator 4 isoforms in transformed endometriotic and malignant ovarian cells. Oncotarget 9:5344–5367

    Article  PubMed  Google Scholar 

  • Roh J-L, Kim EH, Jang H, Shin D (2017) Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 11:254–262

    Article  CAS  PubMed  Google Scholar 

  • Ryschich E, Huszty G, Hartel M et al (2004) Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer 40:1418–1422

    Article  CAS  PubMed  Google Scholar 

  • Ryu MS, Zhang D, Protchenko O et al (2017) PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J Clin Invest 127:1786–1797

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitsu H, Nishimura T, Muramatsu K et al (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45:445–449

    Article  CAS  PubMed  Google Scholar 

  • Salazar J, Mena N, Hunot S et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105:18578–18583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santana-Codina N, Mancias JD (2018) The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals (Basel) 11:114

    Article  CAS  Google Scholar 

  • Santana-Codina N, Mancias JD, Kimmelman AC (2017) The role of autophagy in cancer. Annu Rev Cancer Biol 1:19–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Santana-Codina N, Gableske S, del Rey MQ et al (2019) NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica 104:1342–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santanam U, Banach-petrosky W, Abate-shen C et al (2016) Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev 30:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, Blennow K, Breteler MMB et al (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Rittenberg P, Brown T (2001) Activation of androgen receptor-associated protein 70 (ARA70) mRNA expression in ovarian cancer. Gynecol Oncol 80:132–138

    Article  CAS  PubMed  Google Scholar 

  • Sian J, Dexter DT, Lees AJ et al (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36:356–361

    Article  CAS  PubMed  Google Scholar 

  • Skouta R, Dixon S, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EF, Shaw PJ, De Vos KJ (2017) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933

    Article  PubMed  CAS  Google Scholar 

  • Stockwell BR, Angeli PF, Bush AI et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ou Z, Xie M et al (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34:5617–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ou Z, Chen R et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  • Torii S, Shintoku R, Kubota C et al (2016) An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J 473:769–777

    Article  CAS  PubMed  Google Scholar 

  • Trump BF, Valigorsky JM, Arstila AU et al (1973) The relationship of intracellular pathways of iron metabolism to cellular iron overload and the iron storage diseases cell sap and cytocavitary network pathways in relation to lysosomal storage and turnover of iron macromolecules. Am J Pathol 72:295–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuo Q-Z, Lei P, Jackman KA et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22:1520–1530

    Article  CAS  PubMed  Google Scholar 

  • van Bergen JMG, Li X, Hua J et al (2016) Colocalization of cerebral iron with amyloid beta in mild cognitive impairment. Sci Rep 6:35514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viswanathan VS, Ryan MJ, Dhruv HD et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, An P, Xie E et al (2017) Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66:449–465

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Green M, Choi JE et al (2019) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis S, Carlos AR, Moita MR et al (2017) Metabolic adaptation establishes disease tolerance to sepsis. Cell 169:1263–1275.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu K, Polack A, Dalla-Favera R (1999) Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283:676–679

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Chen F, Sahin A et al (2011) Distinct function of androgen receptor coactivator ARA70alpha and ARA70beta in mammary gland development, and in breast cancer. Breast Cancer Res Treat 128:391–400

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Minikes AM, Gao M et al (2019a) Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 572:E20–E20

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Song J, Wang Y et al (2019b) The potential role of ferroptosis in neonatal brain injury. Front Neurosci 13:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Koh JY, Price S et al (2015) Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 5:410–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SF, Zhang YH, Wang S et al (2019) Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol 21:101090

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Stockwell B (2008) Synthetic lethal screening identifies compounds activating iron- dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang X, Contino G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Sriramaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GsPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Kim KJ, Gaschler MM et al (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 113:E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Zhang Y, Hao J et al (2019) Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res 14:532–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Minagawa S, Araya J et al (2019) Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun 10:1–14

    Article  CAS  Google Scholar 

  • Zhang Y, Mikhael M, Xu D et al (2010) Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid Redox Signal 13:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-H, Wang D-W, Xu S-F et al (2018a) α-lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 14:535–548

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yao Z, Wang L et al (2018b) Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 14:2083–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tan H, Daniels JD et al (2019) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 26:623–633.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Palte MJ, Deik AA et al (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10:1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grant R01DK124384, a Burroughs Wellcome Fund Career Award for Medical Scientists, and a Brigham and Women’s Hospital MFCD Award to J.D.M. Portions of the illustration were generated using Biorender.

Conflicts of Interest

J.D.M. is an inventor on a patent pertaining to the autophagic control of iron metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Mancias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santana-Codina, N., Gikandi, A., Mancias, J.D. (2021). The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. In: Florez, A.F., Alborzinia, H. (eds) Ferroptosis: Mechanism and Diseases. Advances in Experimental Medicine and Biology, vol 1301. Springer, Cham. https://doi.org/10.1007/978-3-030-62026-4_4

Download citation

Publish with us

Policies and ethics