Dang, H.T.: Overview of Duc 2005. In: Proceedings of DUC, pp. 1–12 (2005)
Google Scholar
Wenpeng, Y., Yulong, P.: Optimizing sentence modeling and selection for document summarization. In Proceedings of IJCAI, pp. 1383–1389 (2015)
Google Scholar
Ziqiang, C., Furu, W., Sujian, L., Wenjie, L., Ming, Z., Houfeng, W.: Learning summary prior representation for extractive summarization. In: Proceedings of IJCAI, Short Paper, pp. 829–833 (2015)
Google Scholar
Ziqiang, C., Wenjie, L., Sujian, L., Furu, W., Yanran, L.:. AttSum: joint learning of focusing and summarization with neural attention. In: Proceedings of COLING, pp. 547–556 (2016)
Google Scholar
Preksha, N., Khapra, M.M., Anirban, L., Ravindran, B.: Diversity driven attention model for query-based abstractive summarization. In: Proceedings of ACL, pp. 1063–1072 (2017)
Google Scholar
Shuohang, W., Jing, J.: A compare-aggregate model for matching text sequences. In: Proceedings of ICLR (2017)
Google Scholar
Parikh Ankur, P., Oscar, T., Dipanjan, D., Jakob, U.: A decomposable attention model for natural language inference. In: Proceedings of EMNLP, pp. 2249–2255 (2016)
Google Scholar
Weijie, B., Si, L., Zhao, Y., Guang, C., Zhiqing, L.: A compare-aggregate model with dynamic-clip attention for answer selection. In: Proceedings of CIKM, Short Paper, pages pp. 1987–1990 (2017)
Google Scholar
Seunghyun, Y., Franck, D., Doo, K., Soon, B.T., Kyomin, J.: A compare-aggregate model with latent clustering for answer selection. In: Proceedings of CIKM, Short Paper, pp. 2093–2096 (2019)
Google Scholar
Arbi, B., Xiaohua, L., Jian-Yun, N.: Integrating multiple resources for diversified query expansion. In: Proceedings of ECIR, pp. 437–442 (2014)
Google Scholar
Sarasi, L., Sujan, P., Pavan, K., Amit, S.: Domain-specific hierarchical subgraph extraction: a recommendation use case. In: Proceedings of Big Data, pp. 666–675 (2017)
Google Scholar
Sarasi, L., Sujan, P., Pavan, K., Amit, S.: Domain-specific hierarchical subgraph extraction: a recommendation use case. In: Proceedings of Big Data, pp. 666–675 (2017)
Google Scholar
Qian, C., Xiaodan, Z., Zhen-Hua, L., Diana, I., Si, W.: Neural natural language inference models enhanced with external knowledge. In: Proceedings of ACL, pp. 2406–2417 (2018)
Google Scholar
Robyn, S., Joshua, C., Catherine, H.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of AAAI, pp. 4444–4451 (2017)
Google Scholar
Jacob, D., Ming-Wei, C., Kenton, L., Kristina, T.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)
Google Scholar
Ashish, V., et al.: Attention is all you need. In: Proceedings of NIPS, pp. 5998–6008 (2017)
Google Scholar
Robyn, S., Joanna, L.-D.: ConceptNet at SemEval-2017 Task 2: extending word embeddings with multilingual relational knowledge. In: Proceedings of SemEval workshop at ACL 2017, pp. 85–89 (2017)
Google Scholar
Yoon, K.: Convolutional neural networks for sentence classification. In: Proceedings of EMNLP, pp. 1746–1751 (2014)
Google Scholar
Guy, F., Haggai, R., Odellia, B., David, K.: Unsupervised query-focused multi-document summarization using the cross entropy method. In: Proceedings of SIGIR, Short Paper, pp. 961–964 (2017)
Google Scholar
Jaime, C., Jade, G.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of SIGIR, Short Paper, pp. 335–336 (1998)
Google Scholar
Xiaojun, W., Jianguo, X.: Graph-based multi-modality learning for topic-focused multi-document summarization. In: Proceedings of IJCAI, pp. 1586–1591 (2009)
Google Scholar
Sheng-hua, Z., Yan, L., Bin, L., Jing, L.: Query-oriented unsupervised multi-document summarization via deeplearning model. Expert Syst. Appl. 42(21), 8146–8155 (2015)
CrossRef
Google Scholar
Mittul, S., Arunav, M.: Long-span language models for query-focused unsupervised extractive text summarization. In: Proceedings of ECIR, pp. 657–664 (2018)
Google Scholar
Michel, G.: A skip-chain conditional random field for ranking meeting utterances by importance. In: Proceedings of EMNLP, pp. 364–372 (2006)
Google Scholar
You, O., Wenjie, L., Sujian, L., Qin, L.: Applying regression models to query-focused multidocument summarization. Inf. Process. Manage. 47(2), 227–237 (2011)
CrossRef
Google Scholar
Chen, L., Xian, Q., Yang, L.: Using supervised bigram-based ILP for extractive summarization. In: Proceedings of ACL, pp. 1004–1013 (2013)
Google Scholar
Chao, S., Tao,L.: Learning to rank for query-focused multi-document summarization. In: Proceedings of ICDM, pp. 626–634 (2011)
Google Scholar
Jianpeng, C., Lapata, M.: Neural summarization by extracting sentences and words. In: Proceedings of ACL, pp. 484–494 (2016)
Google Scholar
Pengjie, R., Zhumin, C.: Sentence relation for extractive summarization with deep neural network. TOIS 36(4), 1–32 (2018)
Google Scholar
Kobayashi Hayato, M.N., Yatsuka, T.: Summarization based on embedding distributions. In: Proceedings of EMNLP, pp. 1984–1989 (2015)
Google Scholar
Yanran, L., Li, S.: Query-focused multi-document summarization: combining a topic model with graph-based semi-supervised learning. In: Proceedings of COLING, pp. 1197–1207 (2014)
Google Scholar
Tatsuya, I., Kazuya, M., Hayato, K., Hiroya, T., Manabu, O.: Distant supervision for extractive question summarization. In: Proceedings of ECIR, pp. 182–189 (2020)
Google Scholar