Skip to main content

Adaptive Online Learning for Vulnerability Exploitation Time Prediction

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12343)

Abstract

Exploitation analysis is vital in evaluating the severity of software vulnerabilities and thus prioritizing the order of patching. Although a few methods have been proposed to predict the exploitability of vulnerabilities, most of them treat this problem as an offline binary classification problem. To suit the real-world data stream applications and provide more fine-grained results for vulnerability evaluation, we believe that it is better to treat the exploitation time prediction problem as a multiclass online learning problem. In this paper, we propose an adaptive online learning framework for exploitation time prediction to tackle the combined challenges posed by online learning, multiclass learning and dynamic class imbalance. Within this framework, we design a Sliding Window Imbalance Factor Technique (SWIFT) to capture the real-time imbalanced statuses and thus to handle the dynamic imbalanced problem. Experimental results on real-world data demonstrate that the proposed framework can improve the predictive performance for both the minority class and the majority class.

Keywords

  • Exploitation time prediction
  • Online learning
  • Multiclass imbalance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62008-0_18
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-62008-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    https://nvd.nist.gov/vuln/data-feeds.

  2. 2.

    https://www.exploit-db.com/.

  3. 3.

    https://github.com/google-research/bert.

References

  1. Afzaliseresht, N., Miao, Y., Michalska, S., Liu, Q., Wang, H.: From logs to stories: human-centred data mining for cyber threat intelligence. IEEE Access 8, 19089–19099 (2020)

    CrossRef  Google Scholar 

  2. Alazab, M., Tang, M.: Deep Learning Applications for Cyber Security. Springer, Switzerland (2019). https://doi.org/10.1007/978-3-030-13057-2

    CrossRef  Google Scholar 

  3. AlEroud, A., Karabatis, G.: A contextual anomaly detection approach to discover zero-day attacks. In: 2012 International Conference on Cyber Security, pp. 40–45. IEEE (2012)

    Google Scholar 

  4. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: learning to classify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 105–114. ACM (2010)

    Google Scholar 

  5. Cai, T., Li, J., Mian, A.S., Sellis, T., Yu, J.X., et al.: Target-aware holistic influence maximization in spatial social networks. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Eiram, C., Martin, B.: The cvssv2 shortcomings, faults, and failures formulation. In: Technical report, Forum of Incident Response and Security Teams (FIRST) (2013)

    Google Scholar 

  8. Han, Z., Li, X., Xing, Z., Liu, H., Feng, Z.: Learning to predict severity of software vulnerability using only vulnerability description. In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 125–136. IEEE (2017)

    Google Scholar 

  9. Li, J., Cai, T., Deng, K., Wang, X., Sellis, T., Xia, F.: Community-diversified influence maximization in social networks. Inf. Syst. 92, 101522 (2020)

    Google Scholar 

  10. Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with trust management in web service. World Wide Web 14(4), 407–430 (2011)

    CrossRef  Google Scholar 

  11. Liu, M., Zhang, X., Chen, Z., Wang, X., Yang, T.: Fast stochastic auc maximization with \( o (1/n) \)-convergence rate. In: International Conference on Machine Learning, pp. 3189–3197 (2018)

    Google Scholar 

  12. Rasool, R.U., Ashraf, U., Ahmed, K., Wang, H., Rafique, W., Anwar, Z.: Cyberpulse: a machine learning based link flooding attack mitigation system for software defined networks. IEEE Access 7, 34885–34899 (2019)

    CrossRef  Google Scholar 

  13. Shen, Y., Zhang, T., Wang, Y., Wang, H., Jiang, X.: Microthings: a generic iot architecture for flexible data aggregation and scalable service cooperation. IEEE Commun. Mag. 55(9), 86–93 (2017)

    CrossRef  Google Scholar 

  14. Tang, M., Alazab, M., Luo, Y.: Big data for cybersecurity: vulnerability disclosure trends and dependencies. IEEE Trans. Big Data 5, 317–329 (2017)

    CrossRef  Google Scholar 

  15. Tavabi, N., Goyal, P., Almukaynizi, M., Shakarian, P., Lerman, K.: Darkembed: exploit prediction with neural language models. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  16. Team, C.: Common vulnerability scoring system v3. 0: Specification document. First. org (2015)

    Google Scholar 

  17. Wang, B., Pineau, J.: Online bagging and boosting for imbalanced data streams. IEEE Trans. Knowl. Data Eng. 28(12), 3353–3366 (2016)

    CrossRef  Google Scholar 

  18. Wang, H., Sun, L., Bertino, E.: Building access control policy model for privacy preserving and testing policy conflicting problems. J. Comput. Syst. Sci. 80(8), 1493–1503 (2014)

    MathSciNet  CrossRef  Google Scholar 

  19. Wang, H., Wang, Y., Taleb, T., Jiang, X.: Special issue on security and privacy in network computing. World Wide Web 23(2), 951–957 (2020)

    CrossRef  Google Scholar 

  20. Wang, H., Yi, X., Bertino, E., Sun, L.: Protecting outsourced data in cloud computing through access management. Concurrency Comput. Pract. Exp. 28(3), 600–615 (2016)

    CrossRef  Google Scholar 

  21. Wang, H., Zhang, Z., Taleb, T.: Special issue on security and privacy of iot. World Wide Web 21(1), 1–6 (2018)

    CrossRef  Google Scholar 

  22. Wang, S., Minku, L.L., Yao, X.: A learning framework for online class imbalance learning. In: 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL), pp. 36–45. IEEE (2013)

    Google Scholar 

  23. Wang, S., Minku, L.L., Yao, X.: Dealing with multiple classes in online class imbalance learning. In: IJCAI, pp. 2118–2124 (2016)

    Google Scholar 

  24. Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(4), 1119–1130 (2012)

    Google Scholar 

  25. Wang, X., Wang, S., Xin, Y., Yang, Y., Li, J., Wang, X.: Distributed pregel-based provenance-aware regular path query processing on RDF knowledge graphs. In: World Wide Web, pp. 1–32 (2019)

    Google Scholar 

  26. Yang, Y., Guan, Z., Li, J., Huang, J., Zhao, W.: Interpretable and efficient heterogeneous graph convolutional network. arXiv preprint arXiv:2005.13183 (2020)

  27. Yin, J., You, M., Cao, J., Wang, H., Tang, M.J., Ge, Y.-F.: Data-driven hierarchical neural network modeling for high-pressure feedwater heater group. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp. 225–233. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39469-1_19

    CrossRef  Google Scholar 

  28. Zhang, F., Wang, Y., Liu, S., Wang, H.: Decision-based evasion attacks on tree ensemble classifiers. In: World Wide Web, pp. 1–21 (2020)

    Google Scholar 

  29. Zhang, J., Li, H., Liu, X., Luo, Y., Chen, F., Wang, H., Chang, L.: On efficient and robust anonymization for privacy protection on massive streaming categorical information. IEEE Trans. Dependable Secure Comput. 14(5), 507–520 (2015)

    CrossRef  Google Scholar 

  30. Zhang, J., Tao, X., Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4), 539–568 (2014)

    CrossRef  Google Scholar 

Download references

Acknowledgment

The first author is partly supported by the Science and Technology Research Program of Chongqing Municipal Education Commission of China (Grant No. KJQN201901306)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinli Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y. (2020). Adaptive Online Learning for Vulnerability Exploitation Time Prediction. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)