Skip to main content

Distributed Differential Evolution for Anonymity-Driven Vertical Fragmentation in Outsourced Data Storage

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

Abstract

Vertical fragmentation is a promising technique for outsourced data storage. It can protect data privacy while conserving original data without any transformation. Previous vertical fragmentation approaches need to predefine sensitive associations in data as the optimization objective, therefore unavailable for the data lacking related prior knowledge. Inspired by the anonymity measurement in anonymity approaches such as k-anonymity, an anonymity-driven vertical fragmentation problem is defined in this paper. To tackle this problem, a set-based distributed differential evolution (S-DDE) algorithm is proposed. An island model containing four sub-populations is adopted to improve population diversity and search efficiency. Two set-based update operators, i.e., set-based mutation operator and set-based crossover operator, are designed to transfer the calculation of discrete values to corresponding sets in vertical fragmentation. Extensive experiments are carried out, and the performance of S-DDE on anonymity-driven vertical fragmentation is verified. The computation efficiency of S-DDE is investigated, and the effectiveness of the generated vertical fragmentation solution by S-DDE is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8.

References

  1. Aggarwal, G., et al.: Two can keep a secret: a distributed architecture for secure database services. In: CIDR 2005 (2005)

    Google Scholar 

  2. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Fragmentation and encryption to enforce privacy in data storage. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74835-9_12

    Chapter  Google Scholar 

  3. Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Combining fragmentation and encryption to protect privacy in data storage. ACM Trans. Inf. Syst. Secur. 13(3), 22 (2010)

    Article  Google Scholar 

  4. Gao, Z., Pan, Z., Zuo, C., Gao, J., Xu, Z.: An optimized deep network representation of multimutation differential evolution and its application in seismic inversion. IEEE Trans. Geosci. Remote Sens. 57(7), 4720–4734 (2019). https://doi.org/10.1109/tgrs.2019.2892567

    Article  Google Scholar 

  5. Ge, Y.F., et al.: Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans. Cybern. 48(7), 2166–2180 (2018). https://doi.org/10.1109/tcyb.2017.2728725

    Article  Google Scholar 

  6. Köhler, J., Jünemann, K., Hartenstein, H.: Confidential database-as-a-service approaches: taxonomy and survey. J. Cloud Comput. 4(1), 1 (2015)

    Article  Google Scholar 

  7. Li, J., Yao, W., Zhang, Y., Qian, H., Han, J.: Flexible and fine-grained attribute-based data storage in cloud computing. IEEE Trans. Serv. Comput. 10(5), 785–796 (2017). https://doi.org/10.1109/tsc.2016.2520932

    Article  Google Scholar 

  8. Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with trust management in web service. World Wide Web 14(4), 407–430 (2011). https://doi.org/10.1007/s11280-011-0114-8

    Article  Google Scholar 

  9. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. In: 22nd International Conference on Data Engineering. IEEE (2006). https://doi.org/10.1109/icde.2006.1

  10. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app recommendation based on app permissions. World Wide Web 21(1), 89–104 (2017). https://doi.org/10.1007/s11280-017-0456-y

    Article  Google Scholar 

  11. Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer Science & Business Media, Heidelberg (2006)

    Google Scholar 

  12. Price, K.V.: Differential evolution. In: Handbook of Optimization, pp. 187–214. Springer, Heidelberg (2013)

    Google Scholar 

  13. Rani, K., Sagar, R.K.: Enhanced data storage security in cloud environment using encryption, compression and splitting technique. In: 2017 2nd International Conference on Telecommunication and Networks (TEL-NET). IEEE (2017). https://doi.org/10.1109/tel-net.2017.8343557

  14. SWEENEY, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002). https://doi.org/10.1142/s0218488502001648

  15. UbaidurRahman, N.H., Balamurugan, C., Mariappan, R.: A novel dna computing based encryption and decryption algorithm. Procedia Comput. Sci. 46, 463–475 (2015)

    Article  Google Scholar 

  16. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Samarati, P.: Loose associations to increase utility in data publishing. J. Comput. Secur. 23(1), 59–88 (2015)

    Google Scholar 

  17. Wang, H., Wang, Y., Taleb, T., Jiang, X.: Special issue on security and privacy in network computing. World Wide Web 23(2), 951–957 (2020). https://doi.org/10.1007/s11280-019-00704-x

    Article  Google Scholar 

  18. Wang, H., Zhang, Z., Taleb, T.: Special issue on security and privacy of IoT. World Wide Web 21(1), 1–6 (2018)

    Article  Google Scholar 

  19. Xu, X., Xiong, L., Liu, J.: Database fragmentation with confidentiality constraints: a graph search approach. In: 2015 ACM Conference on Data and Application Security and Privacy, pp. 263–270 (2015)

    Google Scholar 

  20. Yu, Y., Au, M.H., Ateniese, G., Huang, X., Susilo, W., Dai, Y., Min, G.: Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans. Inf. Forensics Secur. 12(4), 767–778 (2017)

    Article  Google Scholar 

  21. Zhang, F., Wang, Y., Liu, S., Wang, H.: Decision-based evasion attacks on tree ensemble classifiers. World Wide Web (2020). https://doi.org/10.1007/s11280-020-00813-y

    Article  Google Scholar 

  22. Zhang, J., Tao, X., Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4), 539–568 (2014)

    Article  Google Scholar 

  23. Zhang, Y., Chen, X., Li, J., Wong, D.S., Li, H., You, I.: Ensuring attribute privacy protection and fast decryption for outsourced data security in mobile cloud computing. Inf. Sci. 379, 42–61 (2017). https://doi.org/10.1016/j.ins.2016.04.015

    Article  MATH  Google Scholar 

  24. Zheng, L.M., Zhang, S.X., Zheng, S.Y., Pan, Y.M.: Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs. IEEE Trans. Industr. Inf. 12(3), 911–923 (2016). https://doi.org/10.1109/tii.2016.2535347

    Article  Google Scholar 

  25. Zhou, X.G., Peng, C.X., Liu, J., Zhang, Y., Zhang, G.J.: Underestimation-assisted global-local cooperative differential evolution and the application to protein structure prediction. IEEE Trans. Evol. Comput., 1 (2019). https://doi.org/10.1109/tevc.2019.2938531

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, YF., Cao, J., Wang, H., Zhang, Y., Chen, Z. (2020). Distributed Differential Evolution for Anonymity-Driven Vertical Fragmentation in Outsourced Data Storage. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics