Skip to main content

Abstract

The chapter provides results of the generalization and interpretation of deep geophysical studies. The model of the deep crustal structure is represented by a set of maps, showing the crustal thickness, and a 5400 km-long Geotransect, crossing major tectonic areas of northeastern Eurasia. A set of digital maps covering an area of 50,000,000 km2 is compiled in a single projection and includes the following maps: the Moho depth; the thickness of main crustal units (sedimentary cover and consolidated crust); the anomalous gravity field and anomalous magnetic field used for zoning of the area; crustal types. The Geotransect crosses North-Eastern Eurasia and characterizes the vertical section of the earth’s crust and upper mantle in the passive margin of the Eurasian continent (including submarine elevations of the Arctic Ocean and its shelf part), the active eastern continental margin and extends into the Pacific Plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleinikov AL, Nemzorov NI, Kashubin SN (1991) Rock type determination from seismic data. Author’s certificate No 1642416 A1 cl. G 01 V1/30

    Google Scholar 

  • Belousov VV, Pavlenkova NI (1989) Types of the Earth’s crust in Europe and North Atlantic. Geotectonics 3, pp 3–14

    Google Scholar 

  • Belousov VV, Pavlenkova NI, Kvyatkovskaya GI (eds) (1991) Deep structure of the USSR/Publ. M.:Nauka, p 224

    Google Scholar 

  • Breivik AJ (2005) Caledonide development offshore–onshore Svalbard based on ocean bottom seismometer, conventional seismic and potential field data. In: Breivik AJ, Mjelde R, Grogan P, Shimamura H, Murai Y, Nishimura Y (eds) Tectonophysics 401, pp 79–117

    Google Scholar 

  • Buchan KL, Ernst RE (2006) The high arctic large igneous province (HALIP) evidence for an associated giant radiating dyke swarm. LIP of the Month. https://www.largeigneousprovinces.org/06apr

  • Demenitskaya R.M. Crust and mantle of the Earth. M.: Nedra, 1967

    Google Scholar 

  • Druzhinin VS (1997) The main features of the interface between the crust and the upper mantle in the Middle Urals (in vicinity of the deep drillhole SG-4). In: Kashubin SN, Kashubina TV, Kolmogorova VV, Parygin GV, Rybalka AV, Tiunova AM (eds) Tectonophysics, vol 269, pp 259–268

    Google Scholar 

  • Druzhinin VS, Egorkin AV, Kashubin SN (1990) New data on deep structure of the Urals and adjacent areas after DSS. In: Proceedings of the USSR academy of sciences, vol 315, N 5, pp 1086–1090

    Google Scholar 

  • Druzhinin VS, Karetin YS, Kashubin SN (2000) Deep geomapping of the Urals region based on DSS data. Region. In: Geology and metallogeny, vol 10, pp 152–161

    Google Scholar 

  • Egorkin AV, Razinkova MI (1980) Cis-Caspian Basin. Seismic models of main geostructures of the USSR. In: Zverev CM, Kosminskaya IP (eds) - M.: Nauka, pp 90–96

    Google Scholar 

  • Egorkin AV, Akinshina LV, Artemenko LS et al (2002) Crystalline crust structure in Siberia along the Khanty-Mansiysk—Lena line. Explor Prot Mineral Resour 2:33–35

    Google Scholar 

  • Embry AF (1991) Mesozoic history of the Arctic Islands. In: Trettin HP (ed) Geology of the Innuitian orogen and Arctic Platform of Canada and Greenland, Geology of Canada 3 (also Geological Society of America) pp 371–433

    Google Scholar 

  • Estrada S, Henjes-Kunst F, Höhndorf A (1999) Cretaceous volcanites from the Canadian Arctic islands: magmatism related to the opening of the Arctic Ocean. Eur J Mineral 11(1):66

    Google Scholar 

  • Funck T, Jackson HR, Shimeld J (2011) The crustal structure of the Alpha Ridge at the transition to the Canadian Polar Margin: results from a seismic refraction experiment. J Geophys Res Solid Earth 116:1–26

    Google Scholar 

  • Gaina C, Werner S, Saltus R, Maus S and the CAMP-GM group (2010) Circum-Arctic Mapping Project: New Magnetic and Gravity Anomaly Maps of the Arctic. In: AM, Gautier D, Stoupakova A, Embry A, Sørensen K (eds) ‘Arctic Petroleum Geology’ Spencer, Geological Society, London, Special Publications. https://earth-info.nima.mil/GandG/wgs84/agp/index.html

  • Grad M, Tiira T, Behm M, Belinsky AA, Booth DC, Brückl E, Cassinis R, Chadwick RA, Czuba W, Egorkin AV, England RW, Erinchek YM, Fougler GR, Gaczyński E, Gosar A, Guterch A, Hegedüs E, Hrubcová P, Janik T, Jokat W et al (2009) The Moho depth map of the European plate. Geophys J Int 176(1):279–292

    Google Scholar 

  • Iwasaki T, Levin V, Nikulin A, Iidaka T (2013) Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609:184–201

    Google Scholar 

  • Jackson HR, Dahl-Jensen T, the LORITA working group (2010) Sedimentary and crustal structure from the Ellesmere Island and Greenland continental shelves onto the Lomonosov Ridge, Arctic Ocean. Geophys J Int 182:11–35

    Google Scholar 

  • Jokat W, Schmidt-Aursch MC (2007) Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys J Int 168:983–998

    Google Scholar 

  • Kanao M, Suvorov VD, Toda S, Tsuboi S (2015) Seismicity, structure and tectonics in the Arctic region. Geosci Front 6:665–677

    Google Scholar 

  • Kashubin SN (ed) (2002) “GRANITE” geotraverse: East European Platform—Urals—Western Siberia (crustal structure based on results of integrated geological-geophysical studies). Ekaterinburg, p 312

    Google Scholar 

  • Kashubin SN (2013) Crustal types of Circumpolar Arctic. In: Kashubin SN, Pavlenkova NI, Petrov OV, Milshtein ED, Shokalsky S, Erinchek YM (eds) Region. Geol Metallogeny 55:5–20

    Google Scholar 

  • Kashubin SN (2016) Deep structure of the Earth’s crust and upper mantle of Mendeleev Rise based on Arctic-2012 DSS line. In: Kashubin SN, Petrov OV, Artemieva IM, Morozov AF, Vyatkina DV, Golysheva YS, Kashubina TV, Milshtein ED, Rybalka AV, Erinchek YM, Sakulina TS, Krupnova NA (eds) Region. Geol Metallogeny 6:16–35

    Google Scholar 

  • Kashubin SN, Petrov OV, Androsov EA, Morozov AF, Kaminsky VD, Poselov VA (2011a) Map of crustal thickness of circumpolar arctic. Regional Geol Metallogeny 46:5–13

    Google Scholar 

  • Kashubin SN, Petrov OV, Androsov EA, Morozov AF, Kaminsky VD, Poselov VA (2011b) Crustal thickness in the Circum Arctic. In: ICAM VI: proceedings of the international conference on arctic margins VI, Fairbanks, Alaska, p 1–17

    Google Scholar 

  • Kashubin SN, Sakulina TS, Pavlenkova NI, Lukashin YP (2011c) Specific features of the P- and S-wave fields during deep seismic studies in water areas. Seismic Survey Technol 4:88–102

    Google Scholar 

  • Kashubin SN, Petrov OV, Rybalka AV, Milshtein ED, Shokalsky SP, Verba ML, Petrov EO (2017) Earth’s crust model of the South-Okhotsk Basin by wide-angle OBS data. Tectonophysics 710–711:37–55

    Article  Google Scholar 

  • Kashubin SN, Petrov OV, Milshtein ED, Androsov EA, Vinokurov IYu, Shokalsky SP (2018a) Crustal types of Central and North East Asia, Far East and Arctic continent—ocean transition areas. Reg Geol Metallogeny 73:6–18

    Google Scholar 

  • Kashubin SN, Petrov OV, Artemieva IM, Morozov AF, Vyatkina DV, Golysheva YS, Kashubina TV, Milshtein ED, Rybalka AV, Erinchek YM, Sakulina TS, Krupnova NA, Shulgin AA (2018b) Crustal structure of the Mendeleev Rise and the Chukchi Plateau (Arctic Ocean) along the Russian wide-angle and multichannel seismic reflection experiment “Arctic-2012”. J Geodyn 119:107–122

    Google Scholar 

  • Kostyuchenko SL, Morozov AF (2007) Geological and geophysical images of the Earth’s crust and upper mantle of the territory of Russia in maps and models. In: Models of the Earth’s crust and upper mantle based on results of deep seismic profiling. Materials of the International Scientific and Practical Seminar. Rosnedra. VSEGEI. SPb.: VSEGEI Publishing House, pp 82–85

    Google Scholar 

  • Kostyuchenko SL, Egorkin AV, Solodilov LN (1999) Structure and genetic mechanisms of the Precambrian rifts of the East-European Platform in Russia by integrated study of seismic, gravity, and magnetic data. Tectonophysics 313:9–28

    Google Scholar 

  • Kosygin YA (1975) Basics of tectonic zoning. In: Principles of tectonic zoning. Vladivostok, pp 8–24

    Google Scholar 

  • Kulinich RG, Valitov MG (2011) Crustal thickness and types in the Sea of Japan according to marine satellite gravimetry. Pac Geol 30(6)3–13

    Google Scholar 

  • Kunin NY, Goncharova NV, Semenova GI et al (1987) Map of mantle surface relief in Eurasia. M.: IFZ USSR Academy of Sciences, Mingeo RSFSR

    Google Scholar 

  • Lebedeva-Ivanova NN, Zamansky YY, Langinen AE, Sorokin MY (2006) Seismic profiling across the Mendeleev Ridge at 82N: evidence of continental crust. Geophys J Int 165:527–544

    Google Scholar 

  • Li S, Mooney WD, Fan J (2006) Crustal structure of mainland China from deep seismic sounding data. Tectonophysics 420, 239–252

    Google Scholar 

  • Ljones F (2004) Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard Margin west of Hornsund. In: Ljones F, Kuwano A, Mjelde R, Breivik A, Shimamura H, Murai Y, Nishimura Y (eds) Tectonophysics 378:17–41

    Google Scholar 

  • Maus S et al (2009) EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochemistry. Geophys Geosyst 10 (Q08005). https://www.geomag.org/models/emag2.html

  • Meissner R, Brown L, Durbaum HJ, Frauke W, Fucks K, Seifert E (eds) (1991) Continental Lithosphere: deep seismic reflection. Geodynamic Series, vol 22, Am. Geophys. Union, Washington, DC

    Google Scholar 

  • Miller HG, Singh V (1994) Potential field tilt—a new concept for location of potential field sources. J Appl Geophys 32(2–3):213–217

    Google Scholar 

  • Miura S (2005) Structural characteristics of Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. In: Miura S, Takahashi S, Nakanishi A, Tsuru T, Kodaira S, Kaneda Y (eds) Tectonophysics 407:165–188

    Google Scholar 

  • Mjelde R (2009) Crustal structure and evolution of the outer More Margin, NE Atlantic. In: Mjelde R, Raum T, Kandilarov A, Murai Y, Takanami T (eds) Tectonophysics 468:224–243

    Google Scholar 

  • Models of the Earth’s crust and upper mantle based on results of deep seismic profiling (2007) Materials of the International Scientific and Practical Seminar. Rosnedra. VSEGEI. SPb.: VSEGEI Publishing House, p 245

    Google Scholar 

  • Mooney WD (2007) Crust and Lithospheric Structure—Global Crustal Structure. Romanowicz B, Dziewonski A (eds) Treatise on geophysics. Vol. 1: Seismology and structure of the earth. Elsevier, pp 361–417

    Google Scholar 

  • Morozov AF (2013) New geological data substantiating continental nature of the area of Central Arctic Rises. In: Morozov AF, Petrov OV, Shokalsky SP, Kashubin SN, Kremenetsky AA, Shkatov MY, Kaminsky VD, Gusev EA, Grikurov GE, Rekant PV, Shevchenko SS, Sergeev SA, Shatov VV (eds) Region. Geol Metallogeny 53:34–55

    Google Scholar 

  • Morozov AF, Mezhelovsky NV, Pavlenkova NI (eds) (2006) Structure and dynamics of lithosphere of Eastern Europe. Research Results under EUROPROBE Programme. Issue 2. M: GEOKART, GEOS, p 735

    Google Scholar 

  • Nakanishi A (2009) Crustal evolution of the southwestern Kuril Arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure. In: Nakanishi A, Kurashimo E, Tatsumi Y, Yamaguchi H, Miura S, Kodaira S, Obana K, Takahashi N, Tsuru T, Kaneda Y, Iwasaki T, Hirata N (eds) Tectonophysics 472:105–123

    Google Scholar 

  • Pavlenkova NI, Pavlenkova GA (2014) Structure of the Earth's crust and upper mantle of Northern Eurasia based on seismic profiling with nuclear explosions. M.: GEOKART GEOS, p 191

    Google Scholar 

  • Pavlenkova NI, Kashubin SN, Pavlenkova GA (2016) Earth's crust of deep platform basins of Northern Eurasia and nature of their formation. Phys Earth 5:150–164

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117 (B04406):1–38. https://bgi.obs-mip.fr/data-products/Grids-and-models. (Pavlis et al. 2012)

  • Petrov O (2016) Crustal structure and tectonic model of the Arctic region. In: Petrov O, Morozov A, Shokalsky S, Kashubin S, Artemieva IM, Sobolev N, Petrov E, Ernst RE, Sergeev S, Smelror M (2016) Earth-Sci Rev 154:29–71

    Google Scholar 

  • Petrov OV et al (Editor-in-Chief) (2008) GIS Atlas of Geological Maps of Russia, the CIS countries and adjacent states, scale 1: 2 500 000. SPb, VSEGEI. https://vsegei.ru/ru/info/gis_cis

  • Petrov OV, Shuwen D, Kiselev EA, Morozov AF (eds) (2016) Atlas of geological maps of Asia and adjacent areas. SPb.: VSEGEI Publishing House, p 48

    Google Scholar 

  • Poselov V, Butsenko V, Chernykh A et al (2011a) The structural integrity of the Lomonosov Ridge with the North American and Siberian continental margins. In: ICAM VI: proceedings of the international conference on arctic margins VI (Fairbanks, Alaska, May 2011) 2014, pp 233–258

    Google Scholar 

  • Poselov VA, Avetisov GP, Kaminsky VD et al (2011b) Russian Arctic geotraverses. SPb: FGUP VNIIOkeangeologia” named after I. S. Gramberg, p 172

    Google Scholar 

  • Roslov YV, Sakoulina TS, Pavlenkova NI (2009) Deep seismic investigations in the Barents and Kara Seas. Tectonophysics 472:301–308

    Google Scholar 

  • Sakulina TS (2011a) Geological model of the Sea of Okhotsk Region from 1-OM and 2-DV-M reference lines. In: Sakulina TS, Kalenich AP, Atakov AI, Tikhonova IM, Krupnova NA, Pyzhyanova TM (eds) Explor Prot Mineral Resour 10:11–17

    Google Scholar 

  • Sakulina TS (2011b) Integrated geological-geophysical studies on 5-AR reference line in East Siberian Sea. Sakulina TS, Verba ML, Kashubina TV, Krupnova NA, Tabyrtsa SN, Ivanov GI (eds) Explor Prot Mineral Resour 10:17–23

    Google Scholar 

  • Sakulina TS (2016) Deep structure of the Earth's crust and upper mantle of North Chukchi Basin along the DSS Dream-line. In: Sakulina TS, Kashubin SN, Petrov OV, Morozov AF, Krupnova NA, Dergunov NT, Razmatova AV, Tabyrtsa SN, Kashubina TV, Yavarova TM (eds) Region. Geol Metallogeny 68:52–65

    Google Scholar 

  • Salnikov AS (ed) (2007) Crustal structure and composition in Magadan sector of Russia after geological-geophysical data. Nauka, Novosibirsk, p 173

    Google Scholar 

  • Takahashi N (2009) Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc–back arc system. In: Takahashi N, Kodaira S, Tatsumi Y, Yamashita M, Sato T, Kaiho Y, Miura S, No T, Takizawa K, Kaneda Y (eds) Geochem Geophys Geosyst 10. Q09X08. https://doi.org/10.1029/2008GC002146

  • Teng J (2013) Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. In: Teng J, Zhang Z, Zhang X, Wang C, Gao R, Yang B, Qiao Y, Deng Y (eds) Tectonophysics 609:202–216

    Google Scholar 

  • Volvovsky BS, Volvovsky IS (1988) Structures of continents with “granite-free” crust type. Geodynamic Studies. Problems of Deep Geology in the USSR. M., 12:169–187

    Google Scholar 

  • Voronin AY (2007) Zoning of territories based on artificial intelligence and pattern recognition in environmental management tasks. Synopsis of Doctoral Thesis in Engineering Science. Moscow, p 44

    Google Scholar 

  • Wang Y, Mooney WD, Yuan X, Coleman RG (2003) The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China. J Geophys Res 108(B6):2322. https://doi.org/10.1029/2001jb000552

  • Wang TK, Chen M-K, Lee C-S, Xia K (2006) Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics 412:237–254

    Google Scholar 

  • Zhao W (2001) Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. In: Zhao W, Mechie J, Brown LD, Guo J, Haines T, Hearn T, Klemperer SL, Ma YS, Meissner R, Nelson KD, Ni JF, Pananont P, Rapine R, Ross A, Saul J (eds) Geophys J Int 145:486–498

    Google Scholar 

  • Zolotov EE, Kostyuchenko SL, Rakitov VA (1998) Tomographic sections of lithosphere of East European Platform. In: Mitrofanov FP, Sharov NV (eds) Seismological model of lithosphere of Northern Europe: Barents Region. KSC RAS, Apatity, Pt 1, pp 71–79

    Google Scholar 

  • Zverev SM, Kosminskaya IP (eds) (1980) Seismic models of lithosphere of main geostructures of the USSR/Publ. M.: Nauka, p 84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kashubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashubin, S.N. et al. (2021). Deep Structure Model. In: Petrov, O.V., Dong, S. (eds) Tectonics of Asia (Northern, Central and Eastern Asia). Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-62001-1_2

Download citation

Publish with us

Policies and ethics