Skip to main content

Natural History of Multiple Sclerosis

  • Chapter
  • First Online:
Neuroimmunology

Abstract

Multiple sclerosis (MS) is a heterogeneous immune-mediated disease that involves demyelination with inflammation in the central nervous system (CNS), as well as a neurodegenerative component. The natural history of the disease has changed favorably over time with the advent of efficacious disease modifying therapies (DMTs) that prevent or limit inflammatory disease activity. In this chapter, we discuss the various phenotypes of MS and their individual characteristics. Next, we discuss important imaging and clinical prognostic factors in MS that may help predict the natural history of an individual patient’s disease. We then review the impact of the advent of the DMT era on the natural history of MS. Comorbidities and health behaviors as they influence MS and its natural history are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.

    Article  CAS  PubMed  Google Scholar 

  3. Okuda DT, Mowry EM, Beheshtian A, Waubant E, Baranzini SE, Goodin DS, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72(9):800–5.

    Article  CAS  PubMed  Google Scholar 

  4. Granberg T, Martola J, Kristoffersen-Wiberg M, Aspelin P, Fredrikson S. Radiologically isolated syndrome--incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Mult Scler (Houndmills, Basingstoke, England). 2013;19(3):271–80.

    Article  Google Scholar 

  5. Okuda DT, Siva A, Kantarci O, Inglese M, Katz I, Tutuncu M, et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One. 2014;9(3):e90509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Okuda DT, Mowry EM, Cree BA, Crabtree EC, Goodin DS, Waubant E, et al. Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology. 2011;76(8):686–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamout B, Al Khawajah M. Radiologically isolated syndrome and multiple sclerosis. Mult Scler Relat Disord. 2017;17:234–7.

    Article  CAS  PubMed  Google Scholar 

  8. Lebrun C, Bensa C, Debouverie M, Wiertlevski S, Brassat D, de Seze J, et al. Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, cerebrospinal fluid, and visual evoked potential: follow-up of 70 patients. Arch Neurol. 2009;66(7):841–6.

    Article  PubMed  Google Scholar 

  9. Vural A, Okar S, Kurne A, Sayat-Gürel G, Acar NP, Karabulut E, et al. Retinal degeneration is associated with brain volume reduction and prognosis in radiologically isolated syndrome. Mult scler (Houndmills, Basingstoke, England). 2018; https://doi.org/10.1177/1352458518817987.

  10. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.

    Article  PubMed  Google Scholar 

  11. Eriksson M, Andersen O, Runmarker B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2003;9(3):260–74.

    Article  Google Scholar 

  12. Brownlee WJ, Miller DH. Clinically isolated syndromes and the relationship to multiple sclerosis. J Clin Neurosci. 2014;21(12):2065–71.

    Article  PubMed  Google Scholar 

  13. Tintore M, Rovira A, Rio J, Nos C, Grive E, Tellez N, et al. Is optic neuritis more benign than other first attacks in multiple sclerosis? Ann Neurol. 2005;57(2):210–5.

    Article  PubMed  Google Scholar 

  14. Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain J Neurol. 2008;131(Pt 3):808–17.

    Article  CAS  Google Scholar 

  15. Optic Neuritis Study Group. The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Neurology. 1997;49(5):1404–13.

    Article  Google Scholar 

  16. Group ONS. Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol. 2008;65(6):727–32.

    Google Scholar 

  17. Dobson R, Ramagopalan S, Giovannoni G. The effect of gender in clinically isolated syndrome (CIS): a meta-analysis. Mult Scler (Houndmills, Basingstoke, England). 2012;18(5):600–4.

    Article  Google Scholar 

  18. Mowry EM, Pesic M, Grimes B, Deen SR, Bacchetti P, Waubant E. Clinical predictors of early second event in patients with clinically isolated syndrome. J Neurol. 2009;256:1061–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Polman C, Kappos L, Freedman MS, Edan G, Hartung HP, Miller DH, et al. Subgroups of the BENEFIT study: risk of developing MS and treatment effect of interferon beta-1b. J Neurol. 2008;255(4):480–7.

    Article  CAS  PubMed  Google Scholar 

  20. Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain J Neurol. 1997;120(Pt 11):2059–69.

    Article  Google Scholar 

  21. CHAMPS Study Group. MRI predictors of early conversion to clinically definite MS in the CHAMPS placebo group. Neurology. 2002;59(7):998–1005.

    Article  Google Scholar 

  22. Tintore M, Rovira A, Martinez MJ, Rio J, Diaz-Villoslada P, Brieva L, et al. Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR Am J Neuroradiol. 2000;21(4):702–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tintore M, Rovira A, Rio J, Nos C, Grive E, Tellez N, et al. Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology. 2006;67(6):968–72.

    Article  CAS  PubMed  Google Scholar 

  24. Filippi M, Horsfield MA, Morrissey SP, MacManus DG, Rudge P, McDonald WI, et al. Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology. 1994;44(4):635–41.

    Article  CAS  PubMed  Google Scholar 

  25. O'Riordan JI, Thompson AJ, Kingsley DP, MacManus DG, Kendall BE, Rudge P, et al. The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain J Neurol. 1998;121(Pt 3):495–503.

    Article  Google Scholar 

  26. Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012;11(2):157–69.

    Article  PubMed  Google Scholar 

  27. Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84(8):909–14.

    Article  PubMed  Google Scholar 

  28. Cole SR, Beck RW, Moke PS, Kaufman DI, Tourtellotte WW. The predictive value of CSF oligoclonal banding for MS 5 years after optic neuritis. Optic Neuritis Study Group. Neurology. 1998;51(3):885–7.

    Article  CAS  PubMed  Google Scholar 

  29. Deshpande R, Kremenchutzky M, Rice GP. The natural history of multiple sclerosis. Adv Neurol. 2006;98:1–15.

    PubMed  Google Scholar 

  30. Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain J Neurol. 2006;129(Pt 3):606–16.

    Article  Google Scholar 

  31. Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain J Neurol. 2003;126(Pt 4):770–82.

    Article  Google Scholar 

  32. Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain J Neurol. 1989;112(Pt 1):133–46.

    Article  Google Scholar 

  33. Tremlett H, Zhao Y, Joseph J, Devonshire V. Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry. 2008;79(12):1368–74.

    Article  CAS  PubMed  Google Scholar 

  34. Tremlett H, Yousefi M, Devonshire V, Rieckmann P, Zhao Y. Impact of multiple sclerosis relapses on progression diminishes with time. Neurology. 2009;73(20):1616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kremenchutzky M, Rice GP, Baskerville J, Wingerchuk DM, Ebers GC. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain J Neurol. 2006;129(Pt 3):584–94.

    Article  CAS  Google Scholar 

  36. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain J Neurol. 2010;133(Pt 7):1914–29.

    Article  Google Scholar 

  37. Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain J Neurol. 1989;112(Pt 6):1419–28.

    Article  Google Scholar 

  38. Weinshenker BG, Rice GP, Noseworthy JH, Carriere W, Baskerville J, Ebers GC. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain J Neurol. 1991;114(Pt 2):1045–56.

    Article  Google Scholar 

  39. Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain J Neurol. 2006;129(Pt 3):595–605.

    Article  Google Scholar 

  40. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343(20):1430–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tutuncu M, Tang J, Zeid NA, Kale N, Crusan DJ, Atkinson EJ, et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2013;19(2):188–98.

    Article  Google Scholar 

  42. Novotna M, Paz Soldan MM, Abou Zeid N, Kale N, Tutuncu M, Crusan DJ, et al. Poor early relapse recovery affects onset of progressive disease course in multiple sclerosis. Neurology. 2015;85(8):722–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Paz Soldan MM, Novotna M, Abou Zeid N, Kale N, Tutuncu M, Crusan DJ, et al. Relapses and disability accumulation in progressive multiple sclerosis. Neurology. 2015;84(1):81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pittock SJ, Mayr WT, McClelland RL, Jorgensen NW, Weigand SD, Noseworthy JH, et al. Disability profile of MS did not change over 10 years in a population-based prevalence cohort. Neurology. 2004;62(4):601–6.

    Article  CAS  PubMed  Google Scholar 

  45. Tremlett H, Paty D, Devonshire V. Disability progression in multiple sclerosis is slower than previously reported. Neurology. 2006;66(2):172–7.

    Article  PubMed  Google Scholar 

  46. Debouverie M, Pittion-Vouyovitch S, Louis S, Guillemin F. Natural history of multiple sclerosis in a population-based cohort. Eur J Neurol. 2008;15(9):916–21.

    Article  CAS  PubMed  Google Scholar 

  47. Scalfari A, Neuhaus A, Daumer M, Ebers GC, Muraro PA. Age and disability accumulation in multiple sclerosis. Neurology. 2011;77(13):1246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tremlett H, Zhao Y, Devonshire V. Natural history comparisons of primary and secondary progressive multiple sclerosis reveals differences and similarities. J Neurol. 2009;256(3):374–81.

    Article  PubMed  Google Scholar 

  49. Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain J Neurol. 2010;133(Pt 7):1900–13.

    Article  Google Scholar 

  50. Stankoff B, Mrejen S, Tourbah A, Fontaine B, Lyon-Caen O, Lubetzki C, et al. Age at onset determines the occurrence of the progressive phase of multiple sclerosis. Neurology. 2007;68(10):779–81.

    Article  CAS  PubMed  Google Scholar 

  51. Tremlett H, Yinshan Z, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2008;14(3):314–24.

    Article  Google Scholar 

  52. Minderhoud JM, van der Hoeven JH, Prange AJ. Course and prognosis of chronic progressive multiple sclerosis. Results of an epidemiological study. Acta Neurol Scand. 1988;78(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  53. Koch M, Mostert J, Heersema D, De Keyser J. Progression in multiple sclerosis: further evidence of an age dependent process. J Neurol Sci. 2007;255(1–2):35–41.

    Article  CAS  PubMed  Google Scholar 

  54. Cottrell DA, Kremenchutzky M, Rice GP, Koopman WJ, Hader W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain J Neurol. 1999;122(Pt 4):625–39.

    Article  Google Scholar 

  55. Koch M, Kingwell E, Rieckmann P, Tremlett H. The natural history of primary progressive multiple sclerosis. Neurology. 2009;73(23):1996–2002.

    Article  PubMed  Google Scholar 

  56. Kremenchutzky M, Cottrell D, Rice G, Hader W, Baskerville J, Koopman W, et al. The natural history of multiple sclerosis: a geographically based study. 7. Progressive-relapsing and relapsing-progressive multiple sclerosis: a re-evaluation. Brain J Neurol. 1999;122(Pt 10):1941–50.

    Article  Google Scholar 

  57. Rush CA, MacLean HJ, Freedman MS. Aggressive multiple sclerosis: proposed definition and treatment algorithm. Nat Rev Neurol. 2015;11(7):379–89.

    Article  CAS  PubMed  Google Scholar 

  58. Freedman MS, Rush CA. Severe, highly active, or aggressive multiple sclerosis. Continuum (Minneapolis, Minn). 2016;22(3):761–84.

    Google Scholar 

  59. Amini Harandi A, Esfandani A, Pakdaman H, Abbasi M, Sahraian MA. Balo’s concentric sclerosis: an update and comprehensive literature review. Rev Neurosci. 2018;29:873.

    Article  PubMed  Google Scholar 

  60. Nunes JC, Radbruch H, Walz R, Lin K, Stenzel W, Prokop S, et al. The most fulminant course of the Marburg variant of multiple sclerosis-autopsy findings. Mult Scler (Houndmills, Basingstoke, England). 2015;21(4):485–7.

    Article  CAS  Google Scholar 

  61. Pittock SJ, McClelland RL, Mayr WT, Jorgensen NW, Weinshenker BG, Noseworthy J, et al. Clinical implications of benign multiple sclerosis: a 20-year population-based follow-up study. Ann Neurol. 2004;56(2):303–6.

    Article  PubMed  Google Scholar 

  62. Ramsaransing GS, De Keyser J. Predictive value of clinical characteristics for ‘benign’ multiple sclerosis. Eur J Neurol. 2007;14(8):885–9.

    Article  CAS  PubMed  Google Scholar 

  63. Sayao AL, Devonshire V, Tremlett H. Longitudinal follow-up of "benign" multiple sclerosis at 20 years. Neurology. 2007;68(7):496–500.

    Article  PubMed  Google Scholar 

  64. Lee JY, Chitnis T. Pediatric Multiple Sclerosis. Semin Neurol. 2016;36(2):148–53.

    Article  PubMed  Google Scholar 

  65. Harding KE, Liang K, Cossburn MD, Ingram G, Hirst CL, Pickersgill TP, et al. Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2013;84(2):141–7.

    Article  PubMed  Google Scholar 

  66. Renoux C, Vukusic S, Mikaeloff Y, Edan G, Clanet M, Dubois B, et al. Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007;356(25):2603–13.

    Article  CAS  PubMed  Google Scholar 

  67. Narula S, Banwell B. Pediatric demyelination. Continuum (Minneapolis, Minn). 2016;22(3):897–915.

    Google Scholar 

  68. Cree BA, Khan O, Bourdette D, Goodin DS, Cohen JA, Marrie RA, et al. Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology. 2004;63(11):2039–45.

    Article  CAS  PubMed  Google Scholar 

  69. Kister I, Chamot E, Bacon JH, Niewczyk PM, De Guzman RA, Apatoff B, et al. Rapid disease course in African Americans with multiple sclerosis. Neurology. 2010;75(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  70. Marrie RA, Cutter G, Tyry T, Vollmer T, Campagnolo D. Does multiple sclerosis-associated disability differ between races? Neurology. 2006;66(8):1235–40.

    Article  CAS  PubMed  Google Scholar 

  71. Khan O, Williams MJ, Amezcua L, Javed A, Larsen KE, Smrtka JM. Multiple sclerosis in US minority populations: clinical practice insights. Neurol Clin Pract. 2015;5(2):132–42.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rudick R, Lee J, Simon J, Fisher E. Significance of T2 lesions in multiple sclerosis: a 13-year longitudinal study. Ann Neurol. 2006;60(2):236–42.

    Article  PubMed  Google Scholar 

  73. Brex PA, Ciccarelli O, O'Riordan JI, Sailer M, Thompson AJ. Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med. 2002;346(3):158–64.

    Article  PubMed  Google Scholar 

  74. Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet (London, England). 1999;353(9157):964–9.

    Article  CAS  Google Scholar 

  75. Tomassini V, Paolillo A, Russo P, Giugni E, Prosperini L, Gasperini C, et al. Predictors of long-term clinical response to interferon beta therapy in relapsing multiple sclerosis. J Neurol. 2006;253(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  76. Lukas C, Minneboo A, de Groot V, Moraal B, Knol DL, Polman CH, et al. Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81(12):1351–6.

    Article  PubMed  Google Scholar 

  77. Rahn AC, Kopke S, Stellmann JP, Schiffmann I, Lukas C, Chard D, et al. Magnetic resonance imaging as a prognostic disability marker in clinically isolated syndrome: a systematic review. Acta Neurol Scand. 2018;139:18.

    Article  PubMed  Google Scholar 

  78. Hughes J, Jokubaitis V, Lugaresi A, Hupperts R, Izquierdo G, Prat A, et al. Association of Inflammation and Disability Accrual in patients with progressive-onset multiple sclerosis. JAMA Neurol. 2018;75(11):1407–15.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Scalfari A, Neuhaus A, Daumer M, Deluca GC, Muraro PA, Ebers GC. Early relapses, onset of progression, and late outcome in multiple sclerosis. JAMA Neurol. 2013;70(2):214–22.

    Article  PubMed  Google Scholar 

  80. Scott TF, Schramke CJ. Poor recovery after the first two attacks of multiple sclerosis is associated with poor outcome five years later. J Neurol Sci. 2010;292(1–2):52–6.

    Article  PubMed  Google Scholar 

  81. Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology. 2003;61(11):1528–32.

    Article  PubMed  Google Scholar 

  82. International Multiple Sclerosis Genetics Consortium (IMSGC) ea. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–60.

    Article  CAS  Google Scholar 

  83. Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18(4):767–78.

    Article  CAS  PubMed  Google Scholar 

  84. Ebers GC, Koopman WJ, Hader W, Sadovnick AD, Kremenchutzky M, Mandalfino P, et al. The natural history of multiple sclerosis: a geographically based study: 8: familial multiple sclerosis. Brain J Neurol. 2000;123(Pt 3):641–9.

    Article  Google Scholar 

  85. Bergamaschi R, Quaglini S, Tavazzi E, Amato MP, Paolicelli D, Zipoli V, et al. Immunomodulatory therapies delay disease progression in multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2016;22(13):1732–40.

    Article  Google Scholar 

  86. Tedeholm H, Lycke J, Skoog B, Lisovskaja V, Hillert J, Dahle C, et al. Time to secondary progression in patients with multiple sclerosis who were treated with first generation immunomodulating drugs. Mult Scler (Houndmills, Basingstoke, England). 2013;19(6):765–74.

    Article  CAS  Google Scholar 

  87. Trojano M, Pellegrini F, Fuiani A, Paolicelli D, Zipoli V, Zimatore GB, et al. New natural history of interferon-beta-treated relapsing multiple sclerosis. Ann Neurol. 2007;61(4):300–6.

    Article  CAS  PubMed  Google Scholar 

  88. Cree BA, Gourraud PA, Oksenberg JR, Bevan C, Crabtree-Hartman E, Gelfand JM, et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. 2016;80(4):499–510.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Palace J, Duddy M, Lawton M, Bregenzer T, Zhu F, Boggild M, et al. Assessing the long-term effectiveness of interferon-beta and glatiramer acetate in multiple sclerosis: final 10-year results from the UK multiple sclerosis risk-sharing scheme. J Neurol Neurosurg Psychiatry. 2018;90:251.

    Article  PubMed  Google Scholar 

  90. Brown MG, Kirby S, Skedgel C, Fisk JD, Murray TJ, Bhan V, et al. How effective are disease-modifying drugs in delaying progression in relapsing-onset MS? Neurology. 2007;69(15):1498–507.

    Article  CAS  PubMed  Google Scholar 

  91. Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, et al. Association of Initial Disease-Modifying Therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321(2):175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, et al. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol. 2019;76:536.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tobin WO, Weinshenker BG. Stopping immunomodulatory medications in MS: frequency, reasons and consequences. Mult Scler Relat Disord. 2015;4(5):437–43.

    Article  CAS  PubMed  Google Scholar 

  94. Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, Bielekova B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front Neurol. 2017;8:577.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Birnbaum G. Stopping disease-modifying therapy in nonrelapsing multiple sclerosis: experience from a clinical practice. Int J MS Care. 2017;19(1):11–4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hua LH, Fan TH, Conway D, Thompson N, Kinzy TG. Discontinuation of disease-modifying therapy in patients with multiple sclerosis over age 60. Mult Scler (Houndmills, Basingstoke, England). 2018; https://doi.org/10.1177/1352458518765656.

  97. Coyle PK. Symptom management and lifestyle modifications in multiple sclerosis. Continuum (Minneapolis, Minn). 2016;22(3):815–36.

    Google Scholar 

  98. Marrie RA. Comorbidity in multiple sclerosis: implications for patient care. Nat Rev Neurol. 2017;13(6):375–82.

    Article  PubMed  Google Scholar 

  99. Zhang T, Tremlett H, Zhu F, Kingwell E, Fisk JD, Bhan V, et al. Effects of physical comorbidities on disability progression in multiple sclerosis. Neurology. 2018;90(5):e419–e27.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Marrie RA, Horwitz R, Cutter G, Tyry T, Campagnolo D, Vollmer T. Comorbidity delays diagnosis and increases disability at diagnosis in MS. Neurology. 2009;72(2):117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marrie RA, Elliott L, Marriott J, Cossoy M, Blanchard J, Leung S, et al. Effect of comorbidity on mortality in multiple sclerosis. Neurology. 2015;85(3):240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Marck CH, Neate SL, Taylor KL, Weiland TJ, Jelinek GA. Prevalence of comorbidities, overweight and obesity in an international sample of people with multiple sclerosis and associations with modifiable lifestyle factors. PLoS One. 2016;11(2):e0148573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mitchell AJ, Benito-Leon J, Gonzalez JM, Rivera-Navarro J. Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. Lancet Neurol. 2005;4(9):556–66.

    Article  PubMed  Google Scholar 

  104. Marrie RA, Walld R, Bolton JM, Sareen J, Patten SB, Singer A, et al. Psychiatric comorbidity increases mortality in immune-mediated inflammatory diseases. Gen Hosp Psychiatry. 2018;53:65–72.

    Article  PubMed  Google Scholar 

  105. Ascherio A, Munger KL, White R, Kochert K, Simon KC, Polman CH, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306–14.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Thouvenot E, Orsini M, Daures JP, Camu W. Vitamin D is associated with degree of disability in patients with fully ambulatory relapsing-remitting multiple sclerosis. Eur J Neurol. 2015;22(3):564–9.

    Article  CAS  PubMed  Google Scholar 

  107. Healy BC, Ali EN, Guttmann CR, Chitnis T, Glanz BI, Buckle G, et al. Smoking and disease progression in multiple sclerosis. Arch Neurol. 2009;66(7):858–64.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gholipour T, Healy B, Baruch NF, Weiner HL, Chitnis T. Demographic and clinical characteristics of malignant multiple sclerosis. Neurology. 2011;76(23):1996–2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mateo Paz Soldán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldassari, L.E., Paz Soldán, M.M. (2021). Natural History of Multiple Sclerosis. In: Piquet, A.L., Alvarez, E. (eds) Neuroimmunology. Springer, Cham. https://doi.org/10.1007/978-3-030-61883-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61883-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61882-7

  • Online ISBN: 978-3-030-61883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics