Skip to main content

Current Trends in the Optimization Approaches for Optimal Structural Control

  • Chapter
  • First Online:
Advances in Structural Engineering—Optimization

Abstract

This chapter describes some of the recent studies on the optimal control of structures. Initially, different passive, active and semi-active control devices are introduced and the importance of optimization in each case is discussed. A comprehensive literature review on the optimal design of various well-known control devices of each category i.e., Tuned Mass Damper (Active, Passive and Semi-Active modifications), Fluid Viscous Damper (Passive and Semi-Active), Viscoelastic Damper and Base Isolation (Passive and Semi-Active) and Active Tendon with special attention to the first studies and studies performed in the last decades, is presented. To suppress tall building vibrations subjected to wind and seismic loads, Tuned Mass Dampers (TMDs) modification have recently gained attention due to their simplicity, stability and reliability. Therefore, in the last section, the results of some recent studies on the optimization of Active and passive Tuned Mass Dampers and a recently proposed promising modification of TMD (i.e. Tuned Mass Damper Inerter) are comprehensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elias, S., Matsagar, V.: Research developments in vibration control of structures using passive tuned mass dampers. Ann. Rev. Control 44, 129–156 (2017)

    Article  Google Scholar 

  2. De Domenico, D., Ricciardi, G., Takewaki, I.: Design strategies of viscous dampers for seismic protection of building structures: a review. Soil Dynam. Earthq. Eng. 118, 144–165 (2019)

    Article  Google Scholar 

  3. Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dynam. 31(4), 749–769 (2002)

    Article  Google Scholar 

  4. Den Hartog, J., Ormondroyd, J.: Theory of the dynamic vibration absorber. ASME J. Appl. Mech. 50(7), 11–22 (1928)

    Google Scholar 

  5. Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation (1985)

    Google Scholar 

  6. Ioi, T., Ikeda, K.: On the dynamic vibration damped absorber of the vibration system. Bull. JSME 21(151), 64–71 (1978)

    Article  Google Scholar 

  7. Villaverde, R.: Reduction seismic response with heavily-damped vibration absorbers. Earthq. Eng. Struct. Dynam. 13(1), 33–42 (1985)

    Article  Google Scholar 

  8. Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dynam. 26(6), 617–635 (1997)

    Article  Google Scholar 

  9. Warburton, G., Ayorinde, E.: Optimum absorber parameters for simple systems. Earthq. Eng. Struct. Dynam. 8(3), 197–217 (1980)

    Article  Google Scholar 

  10. Randall, S., Halsted III, D., Taylor, D.: Optimum vibration absorbers for linear damped systems (1981)

    Google Scholar 

  11. Kaveh, A., Ghazaan, M.I.: Meta-heuristic Algorithms for Optimal Design of Real-Size Structures. Springer (2018)

    Google Scholar 

  12. Kaveh, A.: Applications of Metaheuristic Optimization Algorithms in Civil Engineering. Springer (2017)

    Google Scholar 

  13. Hadi, M.N., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998)

    Article  Google Scholar 

  14. Leung, A.Y., Zhang, H., Cheng, C., Lee, Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dynam. 37(9), 1223–1246 (2008)

    Article  Google Scholar 

  15. Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)

    Article  Google Scholar 

  16. Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dynam. Earthq. Eng. 51, 14–22 (2013)

    Article  Google Scholar 

  17. Farshidianfar, A., Soheili, S.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6(4), 339–356 (2013)

    Article  Google Scholar 

  18. Nigdeli, S.M., Bekdas, G., Yang, X.: Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech 1, 264–268 (2016)

    Google Scholar 

  19. Kaveh, A., Mohammadi, S., Hosseini, O.K., Keyhani, A., Kalatjari, V.: Optimum parameters of tuned mass dampers for seismic applications using charged system search. Iranian J. Sci. Technol. Trans. Civil Eng. 39(C1), 21 (2015)

    Google Scholar 

  20. Farzam, M.F., Kaveh, A.: Optimum design of tuned mass dampers using colliding bodies optimization in frequency domain. Iranian J. Sci. Technol. Trans. Civil Eng. 1–16 (2019)

    Google Scholar 

  21. Bekdaş, G., Kayabekir, A.E., Nigdeli, S.M., Toklu, Y.C.: Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dynam. Earthq. Eng. 116, 552–562 (2019)

    Article  Google Scholar 

  22. Kamgar, R., Khatibinia, M.: Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. Iran Univer. Sci. Technol. 9(2), 213–232 (2019)

    Google Scholar 

  23. Parulekar, Y., Reddy, G.: Passive response control systems for seismic response reduction: a state-of-the-art review. Int. J. Struct. Stab. Dyn. 9(01), 151–177 (2009)

    Article  MATH  Google Scholar 

  24. Saaed, T.E., Nikolakopoulos, G., Jonasson, J.-E., Hedlund, H.: A state-of-the-art review of structural control systems. J. Vib. Control 21(5), 919–937 (2015)

    Article  Google Scholar 

  25. Taylor, D.P.: Smart buildings and viscous dampers—a design engineer’s perspective. Struct. Des. Tall and Spec. Build. 19(4), 369–372 (2010)

    Article  Google Scholar 

  26. De Silva, C.: An algorithm for the optimal design of passive vibration controllers for flexible systems. J. Sound Vib. 75(4), 495–502 (1981)

    Article  MATH  Google Scholar 

  27. Gürgöze, M., Müller, P.: Optimal positioning of dampers in multi-body systems. J. Sound Vib. 158(3), 517–530 (1992)

    Article  MATH  Google Scholar 

  28. Tsuji, M., Nakamura, T.: Optimum viscous dampers for stiffness design of shear buildings. Struct Des. Tall Build. 5(3), 217–234 (1996)

    Article  Google Scholar 

  29. Takewaki, I.: Soil–structure random response reduction via TMD-VD simultaneous use. Comput. Methods Appl. Mech. Eng. 190(5–7), 677–690 (2000)

    Article  MATH  Google Scholar 

  30. Garcia, D.L.: A simple method for the design of optimal damper configurations in MDOF structures. Earthq. Spectra. 17(3), 387–398 (2001)

    Article  Google Scholar 

  31. Singh, M.P., Moreschi, L.M.: Optimal placement of dampers for passive response control. Earthq. Eng. Struct. Dynam. 31(4), 955–976 (2002)

    Article  Google Scholar 

  32. Martinez-Rodrigo, M., Romero, M.: An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Eng. Struct. 25(7), 913–925 (2003)

    Article  Google Scholar 

  33. Christopoulos, C., Filiatrault, A.: Principles of Passive Supplemental Damping and Seismic Isolation. Luss Press (2006)

    Google Scholar 

  34. Takewaki, I.: Building Control with Passive Dampers: Optimal Performance-Based Design for Earthquakes. Wiley (2011)

    Google Scholar 

  35. Aydin, E., Boduroglu, M., Guney, D.: Optimal damper distribution for seismic rehabilitation of planar building structures. Eng. Struct. 29(2), 176–185 (2007)

    Article  Google Scholar 

  36. Estekanchi, H.E., Basim, M.C.: Optimal damper placement in steel frames by the Endurance time method. Struct Des Tall Spec Build 20(5), 612–630 (2011)

    Article  Google Scholar 

  37. Parcianello, E., Chisari, C., Amadio, C.: Optimal design of nonlinear viscous dampers for frame structures. Soil Dynam. Earthq. Eng. 100, 257–260 (2017)

    Article  Google Scholar 

  38. Altieri, D., Tubaldi, E., De Angelis, M., Patelli, E., Dall’Asta, A.: Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems. Bullet. Earthq. Eng. 16(2):963–982 (2018)

    Google Scholar 

  39. Akehashi, H., Takewaki, I.: Comparative investigation on optimal viscous damper placement for elastic-plastic MDOF structures: transfer function amplitude or double impulse. Soil Dynam. Earthq. Eng. 130, 105987 (2020)

    Article  Google Scholar 

  40. Xu, Y., He, Q., Ko, J.: Dynamic response of damper-connected adjacent buildings under earthquake excitation. Eng. Struct. 21(2), 135–148 (1999)

    Article  Google Scholar 

  41. Kandemir-Mazanoglu, E.C., Mazanoglu, K.: An optimization study for viscous dampers between adjacent buildings. Mech. Syst. Signal Process. 89, 88–96 (2017)

    Article  Google Scholar 

  42. Liu, Y., Wu, J., Donà, M.: Effectiveness of fluid-viscous dampers for improved seismic performance of inter-storey isolated buildings. Eng. Struct. 169, 276–292 (2018)

    Article  Google Scholar 

  43. Lagaros, N.D., Plevris, V., and Mitropoulou, C.C.: Design optimization of active and passive structural control systems (2013)

    Google Scholar 

  44. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T., Spencer, B., Yao, J.T.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Article  Google Scholar 

  45. Nielsen, E.J., Lai, M.-L., Soong, T., Kelly, J.M.: Viscoelastic damper overview for seismic and wind applications. In: Smart Structures and Materials 1996: Passive Damping and Isolation. 1996. International Society for Optics and Photonics

    Google Scholar 

  46. Zhang, R.-H., Soong, T.: Seismic design of viscoelastic dampers for structural applications. J. Struct. Eng. 118(5), 1375–1392 (1992)

    Article  Google Scholar 

  47. Hahn, G., Sathiavageeswaran, K.: Effects of added-damper distribution on the seismic response of buildings. Comput. Struct. 43(5), 941–950 (1992)

    Article  Google Scholar 

  48. Wu, B., Ou, J.-P., Soong, T.: Optimal placement of energy dissipation devices for three-dimensional structures. Eng. Struct. 19(2), 113–125 (1997)

    Article  Google Scholar 

  49. Shukla, A., Datta, T.: Optimal use of viscoelastic dampers in building frames for seismic force. J. Struct. Eng. 125(4), 401–409 (1999)

    Article  Google Scholar 

  50. Kim, J., Bang, S.: Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures. Eng. Struct. 24(10), 1257–1269 (2002)

    Article  Google Scholar 

  51. Xu, Z.-D., Shen, Y.-P., Zhao, H.-T.: A synthetic optimization analysis method on structures with viscoelastic dampers. Soil Dynam. Earthq. Eng. 23(8), 683–689 (2003)

    Article  Google Scholar 

  52. Park, J.H., Kim, J., Min, K.W.: Optimal design of added viscoelastic dampers and supporting braces. Earthq. Eng. Struct. Dynam. 33(4), 465–484 (2004)

    Article  Google Scholar 

  53. Fujita, K., Moustafa, A., Takewaki, I.: Optimal placement of viscoelastic dampers and supporting members under variable critical excitations. Earthq. Struct. 1(1), 43–67 (2010)

    Article  Google Scholar 

  54. Pawlak, Z., Lewandowski, R.: Optimization of viscoelastic dampers as described by the fractional rheological model. In: Proceedings of the tenth international conference on computational structures technology, Valencia, Spain, Cd-Rom, Paper. (2010)

    Google Scholar 

  55. Zhu, H., Ge, D., Huang, X.: Optimum connecting dampers to reduce the seismic responses of parallel structures. J. Sound Vib. 330(9), 1931–1949 (2011)

    Article  Google Scholar 

  56. Morgan, T.A.: The use of innovative base isolation systems to achieve complex seismic performance objectives. University of California, Berkeley (2007)

    Google Scholar 

  57. Ganji, M., Kazem, H.: Comparing seismic performance of steel structures equipped with viscous dampers and lead rubber bearing base isolation under near-field earthquake. Civ. Eng. J. 3(2), 124–136 (2017)

    Article  Google Scholar 

  58. Zou, X.: Integrated design optimization of base-isolated concrete buildings under spectrum loading. Struct. Multi. Optim. 36(5), 493 (2008)

    Article  Google Scholar 

  59. Oliveto, G., Oliveto, N.D., Athanasiou, A.: Constrained optimization for 1-D dynamic and earthquake response analysis of hybrid base-isolation systems. Soil Dynam. Earthq. Eng. 67, 44–53 (2014)

    Article  Google Scholar 

  60. Yucel, M., Öncü-Davas, S., Nigdeli, S.M., Bekdas, G., Sevgen, S.: Estimating of analysis results for structures with linear base isolation systems using artificial neural network model. Int. J. Cont. Syst. Robot. 3 (2018)

    Google Scholar 

  61. Huang, P.C., Wan, S., Yen, J.Y.: A novel method of searching appropriate ranges of base isolation design parameters through entropy-based classification. Struct. Contr. Health Monit.: Offic. J. Int. Assoc. Struct. Contr. Monit. Eur. Assoc. Control Struct. 16(4), 385–405 (2009)

    Article  Google Scholar 

  62. Fan, J., Long, X., Zhang, Y.: Optimum design of lead-rubber bearing system with uncertainty parameters. Struct. Eng. Mech. 56(6), 959–982 (2015)

    Article  Google Scholar 

  63. Pourzeynali, S., Zarif, M.: Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms. J. Sound Vib. 311(3–5), 1141–1160 (2008)

    Article  Google Scholar 

  64. Nigdeli, S.M., Bekdaş, G., Alhan, C.: Optimization of seismic isolation systems via harmony search. Eng. Optim. 46(11), 1553–1569 (2014)

    Article  Google Scholar 

  65. Quaranta, G., Marano, G.C., Greco, R., Monti, G.: Parametric identification of seismic isolators using differential evolution and particle swarm optimization. Appl. Soft Comput. 22, 458–464 (2014)

    Article  Google Scholar 

  66. Çerçevik, A.E., Avşar, Ö., Hasançebi, O.: Optimum design of seismic isolation systems using metaheuristic search methods. Soil Dynam. Earthq. Eng. 131, 106012 (2020)

    Article  Google Scholar 

  67. Zou, X.-K., Wang, Q., Li, G., Chan, C.-M.: Integrated reliability-based seismic drift design optimization of base-isolated concrete buildings. J. Struct. Eng. 136(10), 1282–1295 (2010)

    Article  Google Scholar 

  68. Mishra, S.K., Roy, B.K., Chakraborty, S.: Reliability-based-design-optimization of base isolated buildings considering stochastic system parameters subjected to random earthquakes. Int. J. Mech. Sci. 75, 123–133 (2013)

    Article  Google Scholar 

  69. Zhang, J., Shu, Z.: Optimal design of isolation devices for mid-rise steel moment frames using performance based methodology. Bull. Earthq. Eng. 16(9), 4315–4338 (2018)

    Article  Google Scholar 

  70. Mousazadeh, M., Pourreza, F., Basim, M.C., Chenaghlou, M.: An efficient approach for LCC-based optimum design of lead-rubber base isolation system via FFD and analysis of variance (ANOVA). Bull. Earthq. Eng. 18(4), 1805–1827 (2020)

    Article  Google Scholar 

  71. Roy, B.K., Chakraborty, S.: Robust optimum design of base isolation system in seismic vibration control of structures under random system parameters. Struct. Saf. 55, 49–59 (2015)

    Article  Google Scholar 

  72. Hu, J. Xu, J.: Parameter optimization and control characteristics analysis of TLMD system based on phase deviation. J. Shanghai Jiaotong University (Sci), 1–12 (2019)

    Google Scholar 

  73. Park, S., Glade, M., Lackner, M.A.: Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine. Eng. Struct. 209, 110260 (2020)

    Article  Google Scholar 

  74. Manchalwar, A., Bakre, S.: Optimization of metallic damper location for seismic response control. J. Vibr. Eng. Technol. 7(3), 261–275 (2019)

    Article  Google Scholar 

  75. Javanmardi, A., Ibrahim, Z., Ghaedi, K., Ghadim, H.B., Hanif, M.U.: State-of-the-art review of metallic dampers: testing, development and implementation. Arch. Comput. Meth. Eng. 27(2), 455–478 (2020)

    Article  Google Scholar 

  76. Jarrahi, H., Asadi, A., Khatibinia, M., Etedali, S.: Optimal design of rotational friction dampers for improving seismic performance of inelastic structures. J. Build Eng. 27, 100960 (2020)

    Article  Google Scholar 

  77. Zou, S., Heisha, W., Tan, P.: Performance-based dynamic optimal design for isolated structures with multiple-coupling friction dampers. Adv. Struct. Eng. 1369433220908110 (2020)

    Google Scholar 

  78. Deng, K., Pan, P., Su, Y., Xue, Y.: Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading. Eng. Struct. 93, 27–35 (2015)

    Article  Google Scholar 

  79. Khatibinia, M., Jalaipour, M., Gharehbaghi, S.: Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach. Eng. Struct. 197, 108874 (2019)

    Article  Google Scholar 

  80. Morales-Beltran, M., Teuffel, P.: Towards smart building structures: adaptive structures in earthquake and wind loading control response–a review. Intell. Build. Int. 5(2), 83–100 (2013)

    Article  Google Scholar 

  81. Casciati, F., Rodellar, J., Yildirim, U.: Active and semi-active control of structures–theory and applications: a review of recent advances. J. Intell. Mater. Syst. Struct. 23(11), 1181–1195 (2012)

    Article  Google Scholar 

  82. Lund, R.: Active Damping of Large Structures in Winds, Structural Control, vol. 459, p. 470. North-Holland Publishing Company (1980)

    Google Scholar 

  83. Chang, J.C., Soong, T.T.: Structural control using active tuned mass dampers. J. Eng. Mech. Div. 106(6), 1091–1098 (1980)

    Google Scholar 

  84. Nishimura, I.: Acceleration feedback method applied to active tuned mass damper. In: First European Conference on Smart Structures and Materials. International Society for Optics and Photonics (1992)

    Google Scholar 

  85. Nishimura, I., Sakamoto, M., Yamada, T., Koshika, N., Kobori, T.: Acceleration feedback method applied to active-passive composite tuned mass damper. J. Struct. Control 1(1–2), 103–116 (1994)

    Article  Google Scholar 

  86. Xu, Y.: Parametric study of active mass dampers for wind-excited tall buildings. Eng. Struct. 18(1), 64–76 (1996)

    Article  Google Scholar 

  87. Wu, J., Yang, J.: Active control of transmission tower under stochastic wind. J. Struct. Eng. 124(11), 1302–1312 (1998)

    Article  Google Scholar 

  88. Li, C., Li, J., Qu, Y.: An optimum design methodology of active tuned mass damper for asymmetric structures. Mech. Syst. Sig. Process. 24(3), 746–765 (2010)

    Article  MathSciNet  Google Scholar 

  89. Jiang, X., Adeli, H.: Neuro-genetic algorithm for non-linear active control of structures. Int. J. Numer. Meth. Eng. 75(7), 770–786 (2008)

    Article  MATH  Google Scholar 

  90. Ahlawat, A., Ramaswamy, A.: Multiobjective optimal fuzzy logic control system for response control of wind-excited tall buildings. J. Eng. Mech. 130(4), 524–530 (2004)

    Article  Google Scholar 

  91. Soleymani, M., Khodadadi, M.: Adaptive fuzzy controller for active tuned mass damper of a benchmark tall building subjected to seismic and wind loads. Struct. Des. Tall and Spec. Build. 23(10), 781–800 (2014)

    Article  Google Scholar 

  92. Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., Geem, Z.W.: Optimum design of PID controlled active tuned mass damper via modified harmony search. Appl. Sci. 10(8), 2976 (2020)

    Article  Google Scholar 

  93. Amini, F., Hazaveh, N.K., Rad, A.A.: Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput.-Aided Civ. Infrastruct. Eng. 28(7), 542–557 (2013)

    Article  Google Scholar 

  94. Shariatmadar, H., Razavi, H.M.: Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method. Struct. Eng. Mech. 51(4), 547–564 (2014)

    Article  Google Scholar 

  95. Amini, F., Bagheri, A.: Optimal control of structures under earthquake excitation based on the colonial competitive algorithm. Struct. Des. Tall and Spec. Build. 23(7), 500–511 (2014)

    Article  Google Scholar 

  96. Pourzeynali, S., Lavasani, H., Modarayi, A.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29(3), 346–357 (2007)

    Article  Google Scholar 

  97. Ozer, H.O., Sayin, A., Korkmaz, N., Yagız, N.: Sliding mode control optimized by genetic algorithm for building model. In: Proceedings of International Conference on Vibration Problems (2013)

    Google Scholar 

  98. Li, Q., Liu, D., Fang, J., Tam, C.: Multi-level optimal design of buildings with active control under winds using genetic algorithms. J. Wind Eng. Ind. Aerodyn. 86(1), 65–86 (2000)

    Article  Google Scholar 

  99. Ankireddi, S., Yang, H.T.: Multiple objective LQG control of wind-excited buildings. J. Struct. Eng. 123(7), 943–951 (1997)

    Article  Google Scholar 

  100. Wong, K.K., Yang, R.: Predictive instantaneous optimal control of elastic structures during earthquakes. Earthquak. Eng. Struct. Dynam. 32(14), 2161–2177 (2003)

    Article  Google Scholar 

  101. Khatibinia, M., Mahmoudi, M., Eliasi, H.: Optimal sliding mode control for seismic control of buildings equipped with atmd. Iran Univ. Sci. Technol. 10(1), 1–15 (2020)

    Google Scholar 

  102. Chang, C.-C., Yu, L.-O.: A simple optimal pole location technique for structural control. Eng. Struct. 20(9), 792–804 (1998)

    Article  Google Scholar 

  103. Huo, L., Song, G., Li, H., Grigoriadis, K.: Robust control design of active structural vibration suppression using an active mass damper. Smart Mater. Struct. 17(1), 015021 (2007)

    Article  Google Scholar 

  104. Palazzo, B., Petti, L.: Optimal structural control in the frequency domain: control in norm H2 and H. J. Struct. Control 6(2), 205–221 (1999)

    Article  Google Scholar 

  105. Ahlawat, A., Ramaswamy, A.: Multiobjective optimal structural vibration control using fuzzy logic control system. J. Struct. Eng. 127(11), 1330–1337 (2001)

    Article  Google Scholar 

  106. Othman, S.M., Rahmat, M.F.a., Rozali, S.M., Salleh, S.: PID parameters optimization using PSO technique for nonlinear electro hydraulic actuator. J. Teknologi 77(28), 67–72 (2015)

    Google Scholar 

  107. Arif Şen, M., Tinkir, M., Kalyoncu, M.: Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm. J. Low Freq. Noise, Vib. Active Control 37(1), 107–127 (2018)

    Article  Google Scholar 

  108. Kim, J.-T., Jung, H.-J., Lee, I.-W.: Optimal structural control using neural networks. J. Eng. Mech. 126(2), 201–205 (2000)

    Article  Google Scholar 

  109. Heidari, A.H., Etedali, S., Javaheri-Tafti, M.R.: A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Front. Struct. Civ. Eng. 12(1), 44–57 (2018)

    Article  Google Scholar 

  110. Baygi, S.M.H., Karsaz, A., Elahi, A.: A hybrid optimal PID-Fuzzy control design for seismic exited structural system against earthquake: a salp swarm algorithm. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE (2018)

    Google Scholar 

  111. Soong, T.: State-of-the-art review: active structural control in civil engineering. Eng. Struct. 10(2), 74–84 (1988)

    Article  Google Scholar 

  112. Soong, T., Spencer Jr., B.: Active structural control: theory and practice. J. Eng. Mech. 118(6), 1282–1285 (1992)

    Article  Google Scholar 

  113. Suhardjo, J., Spencer Jr., B., Kareem, A.: Frequency domain optimal control of wind-excited buildings. J. Eng. Mech. 118(12), 2463–2481 (1992)

    Article  Google Scholar 

  114. Chang, C.-C., Lin, C.-C.: H drift control of time-delayed seismic structures. Earthquak. Eng. Eng. Vibr. 8(4), 617–626 (2009)

    Article  MathSciNet  Google Scholar 

  115. Li, Q., Liu, D., Fang, J.: Optimum design of actively controlled structures using genetic algorithms. Adv. Struct. Eng. 2(2), 109–118 (1999)

    Article  Google Scholar 

  116. Issa, J., Mukherjee, R., Shaw, S.W.: Vibration suppression in structures using cable actuators. J. Vib. Acoust. 132(3) (2010)

    Google Scholar 

  117. Rao, A.R.M., Sivasubramanian, K.: Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm. J. Sound Vib. 311(1–2), 133–159 (2008)

    Google Scholar 

  118. Nigdeli, S.M.: Active brace control of frame structures under earthquake excitation. Nat. Cataclysms Glob. Prob. Mod. Civilization 102 (2011)

    Google Scholar 

  119. Gluck, J., Ribakov, Y.: Active viscous damping system with amplifying braces for control of MDOF structures. Earthquak. Eng. Struct. Dynam. 31(9), 1735–1751 (2002)

    Article  Google Scholar 

  120. Gupta, H., Soong, T., Dargush, G.: Active aerodynamic bi-directional control of structures II: tall buildings. Eng. Struct. 22(4), 389–399 (2000)

    Article  Google Scholar 

  121. Scruggs, J., Taflanidis, A., Beck, J.: Reliability-based control optimization for active base isolation systems. Struct. Control Health Monit.: Offic. J. Int. Assoc. Struct. Control Monit. Eur. Association Control Struct. 13(2–3), 705–723 (2006)

    Article  Google Scholar 

  122. Balendra, T., Wang, C., Yan, N.: Control of wind-excited towers by active tuned liquid column damper. Eng. Struct. 23(9), 1054–1067 (2001)

    Article  Google Scholar 

  123. Xu, J., Yang, X., Li, W., Zheng, J., Wang, Y., Fan, M.: Research on semi-active vibration isolation system based on electromagnetic spring. Mech. Ind. 21(1), 101 (2020)

    Article  Google Scholar 

  124. Dyke, S., Spencer Jr., B., Sain, M., Carlson, J.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565 (1996)

    Article  Google Scholar 

  125. Dyke, S., Spencer Jr., B., Sain, M., Carlson, J.: Seismic response reduction using magnetorheological dampers. IFAC Proc. Volumes 29(1), 5530–5535 (1996)

    Article  Google Scholar 

  126. Spencer, B., Dyke, S., Sain, M.K.: Magnetorheological dampers: a new approach to seismic protection of structures. In: Proceedings of 35th IEEE Conference on Decision and Control. IEEE (1996)

    Google Scholar 

  127. Jung, H.-J., Lee, I.W., Spencer Jr, B.F. State-of-the-art of MR damper-based control systems in civil engineering applications. In: Proceedings of US-Korea Workshop on Smart Infra-Structural Systems (2002)

    Google Scholar 

  128. Liu, Y.-Q., Yang, S.-p., Liao, Y., Zhang, G.: Parameter identification of Bouc-Wen model for MR damper based on genetic algorithm. Zhendong yu Chongji (J. Vib. Shock) 30(7), 261–265 (2011)

    Google Scholar 

  129. Azar, B.F., Veladi, H., Talatahari, S., Raeesi, F.: Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms. KSCE J. Civil Eng. 24(3), 867–878 (2020)

    Article  Google Scholar 

  130. Razman, M.A., Priyandoko, G., Yusoff, A.R.: Bouc-wen model parameter identification for a MR fluid damper using particle swarm optimization. In: Advanced Materials Research. Trans Tech Publ (2014)

    Google Scholar 

  131. Yang, Y., Ding, Y., Zhu, S. parameter identification of MR damper model based on particle swarm optimization. In: Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Springer (2020)

    Google Scholar 

  132. Xiao, Z., Zhang, Z., Quansah, A.: Combined identification of parameters in the mechanical model of magnetorheological damper (2019)

    Google Scholar 

  133. Zhu, H., Rui, X., Yang, F., Zhu, W., Wei, M.: An efficient parameters identification method of normalized Bouc-Wen model for MR damper. J. Sound Vib. 448, 146–158 (2019)

    Article  Google Scholar 

  134. Talatahari, S., Kaveh, A., Rahbari, N.M.: Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization. J. Mech. Sci. Technol. 26(8), 2523–2534 (2012)

    Article  Google Scholar 

  135. Zaman, M.A., Sikder, U.: Bouc-Wen hysteresis model identification using modified firefly algorithm. J. Magn. Magn. Mater. 395, 229–233 (2015)

    Article  Google Scholar 

  136. Giuclea, M., Sireteanu, T., and Mitu, A.: Use of genetic algorithms for fitting the Bouc-Wen model to experimental hysteretic curves. Rev. Roum. Sci. Techn.–Mec. Appl. 54(1), 3–10 (2009)

    Google Scholar 

  137. Bartkowski, P., Zalewski, R., Chodkiewicz, P.: Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm. Arch. Civ. Mech. Eng. 19(2), 322–333 (2019)

    Article  Google Scholar 

  138. Ye, M., Wang, X.: Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization. Smart Mater. Struct. 16(6), 2341 (2007)

    Article  Google Scholar 

  139. Charalampakis, A., Dimou, C.: Identification of Bouc-Wen hysteretic systems using particle swarm optimization. Comput. Struct. 88(21–22), 1197–1205 (2010)

    Article  Google Scholar 

  140. Son, N.N., Van Kien, C., Anh, H.P.H.: Parameters identification of Bouc-Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm. Eng. Appl. Artif. Intell. 87, 103317 (2020)

    Article  Google Scholar 

  141. Talatahari, S., Mohaggeg, H., Najafi, K., Manafzadeh, A.: Solving parameter identification of nonlinear problems by artificial bee colony algorithm. Math. Prob. Eng. 2014 (2014)

    Google Scholar 

  142. Spencer Jr., B., Dyke, S., Sain, M., Carlson, J.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. 123(3), 230–238 (1997)

    Article  Google Scholar 

  143. Yang, G., Spencer Jr., B., Carlson, J., Sain, M.: Large-scale MR fluid dampers: modeling and dynamic performance considerations. Eng. Struct. 24(3), 309–323 (2002)

    Article  Google Scholar 

  144. Giuclea, M., Sireteanu, T., Stancioiu, D., Stammers, C.W.: Modeling of magneto rheological damper dynamic behavior by genetic algorithms based inverse method. Rom. Acad. 5(1), 000–000 (2004)

    Google Scholar 

  145. Giuclea, M., Sireteanu, T., Stancioiu, D., Stammers, C.W.: Model parameter identification for vehicle vibration control with magnetorheological dampers using computational intelligence methods. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 218(7), 569–581 (2004)

    Google Scholar 

  146. Shu, G., Li, Z.: Parametric identification of the Bouc-Wen model by a modified genetic algorithm: application to evaluation of metallic dampers. Earthquak. Struct. 13(4), 397–407 (2017)

    Google Scholar 

  147. Kwok, N., Ha, Q., Nguyen, T., Li, J., Samali, B.: A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens. Actuators, A 132(2), 441–451 (2006)

    Article  Google Scholar 

  148. Kwok, N., Ha, Q., Nguyen, M., Li, J., Samali, B.: Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Trans. 46(2), 167–179 (2007)

    Article  Google Scholar 

  149. Yan, G., Zhou, L.L.: Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers. J. Sound Vib. 296(1–2), 368–382 (2006)

    Article  Google Scholar 

  150. Askari, M., Davaie-Markazi, A.H.: Multi-objective optimal fuzzy logic controller for nonlinear building-MR damper system. In: 2008 5th International multi-conference on systems, signals and devices. IEEE (2008)

    Google Scholar 

  151. Shook, D.A., Roschke, P.N., Lin, P.-Y., Loh, C.-H.: GA-optimized fuzzy logic control of a large-scale building for seismic loads. Eng. Struct. 30(2), 436–449 (2008)

    Article  Google Scholar 

  152. Shook, D.A., Roschke, P.N., Lin, P.-Y., Loh, C.-H.: Semi-active control of a torsionally-responsive structure. Eng. Struct. 31(1), 57–68 (2009)

    Article  Google Scholar 

  153. Ali, S.F., Ramaswamy, A.: Optimal fuzzy logic control for MDOF structural systems using evolutionary algorithms. Eng. Appl. Artif. Intell. 22(3), 407–419 (2009)

    Article  Google Scholar 

  154. Huang, Z.-S., Wu, C., Hsu, D.-S.: Semi-active fuzzy control of mr damper on structures by genetic algorithm. J. Mech. 25(1), N1–N6 (2009)

    Article  Google Scholar 

  155. Bitaraf, M., Ozbulut, O.E., Hurlebaus, S., Barroso, L.: Application of semi-active control strategies for seismic protection of buildings with MR dampers. Eng. Struct. 32(10), 3040–3047 (2010)

    Article  Google Scholar 

  156. Bozorgvar, M., Zahrai, S.M.: Semi-active seismic control of buildings using MR damper and adaptive neural-fuzzy intelligent controller optimized with genetic algorithm. J. Vib. Control 25(2), 273–285 (2019)

    Article  Google Scholar 

  157. Uz, M.E., Hadi, M.N.: Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multi-objective genetic algorithm. Eng. Struct. 69, 135–148 (2014)

    Article  Google Scholar 

  158. Raeesi, F., Azar, B.F., Veladi, H., Talatahari, S.: An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm. In: Structures. Elsevier (2020)

    Google Scholar 

  159. Schurter, K.C., Roschke, P.N.: Neuro-fuzzy control of structures using acceleration feedback. Smart Mater. Struct. 10(4), 770 (2001)

    Article  Google Scholar 

  160. Hiramoto, K., Matsuoka, T., Sunakoda, K.: Inverse lyapunov approach for semi-active control of civil structures. Struct. Control Health Monit. 18(4), 382–403 (2011)

    Article  Google Scholar 

  161. Hashemi, S.M.A., Haji Kazemi, H., Karamodin, A.: Localized genetically optimized wavelet neural network for semi‐active control of buildings subjected to earthquake. Struct. Control Health Monit. 23(8), 1074–1087 (2016)

    Google Scholar 

  162. Shi, Y., Xin, N., Ningwei, W.: Optimal placement of MR damper set in structures. Earthquak. Eng. Eng. Vib.-Chin. Ed. 24(3), 175–178 (2004)

    Google Scholar 

  163. Ok, S.-Y., Song, J., Park, K.-S.: Optimal design of hysteretic dampers connecting adjacent structures using multi-objective genetic algorithm and stochastic linearization method. Eng. Struct. 30(5), 1240–1249 (2008)

    Article  Google Scholar 

  164. Bao, Y., Huang, C., Zhou, D., Zhao, Y.-J.: Semi-active direct velocity control method of dynamic response of spatial reticulated structures based on MR dampers. Adv. Struct. Eng. 12(4), 547–558 (2009)

    Google Scholar 

  165. Li, L., Song, G., Ou, J.: A genetic algorithm-based two-phase design for optimal placement of semi-active dampers for nonlinear benchmark structure. J. Vib. Control 16(9), 1379–1392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  166. Amini, F., Karami, K.: Capacity design by developed pole placement structural control. Struct. Eng. Mech. 39(1), 147–168 (2011)

    Article  Google Scholar 

  167. Elmeligy, O.M., Hassan, M.: Optimum allocation of MR dampers within semi-active control strategies of three-degree-of-freedom systems. Int. J. Recent Contrib. Eng. Sci. IT (IJES) 4(4), 45–49 (2016)

    Google Scholar 

  168. Bhaiya, V., Bharti, S., Shrimali, M., Datta, T.: Genetic algorithm based optimum semi-active control of building frames using limited number of magneto-rheological dampers and sensors. J. Dyn. Syst. Measur. Control 140(10) (2018)

    Google Scholar 

  169. Zabihi-Samani, M., Ghanooni-Bagha, M.: Optimal semi-active structural control with a wavelet-based cuckoo-search fuzzy logic controller. Iranian J. Sci. Technol. Trans. Civ. Eng. 43(4), 619–634 (2019)

    Article  Google Scholar 

  170. Hrovat, D., Barak, P., Rabins, M.: Semi-active versus passive or active tuned mass dampers for structural control. J. Eng. Mech. 109(3), 691–705 (1983)

    Article  Google Scholar 

  171. Setareh, M., Ritchey, J.K., Murray, T.M., Koo, J.-H., Ahmadian, M.: Semiactive tuned mass damper for floor vibration control. J. Struct. Eng. 133(2), 242–250 (2007)

    Article  Google Scholar 

  172. Kaveh, A., Pirgholizadeh, S., Khadem, H.O.: Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm (2015)

    Google Scholar 

  173. Madden, G.J., Symans, M.D., Wongprasert, N.: Experimental verification of seismic response of building frame with adaptive sliding base-isolation system. J. Struct. Eng. 128(8), 1037–1045 (2002)

    Article  Google Scholar 

  174. Wongprasert, N., Symans, M.: Experimental evaluation of adaptive elastomeric base-isolated structures using variable-orifice fluid dampers. J. Struct. Eng. 131(6), 867–877 (2005)

    Article  Google Scholar 

  175. Narasimhan, S., Nagarajaiah, S.: Smart base isolated buildings with variable friction systems: H controller and SAIVF device. Earthquak. Eng. Struct. Dynam. 35(8), 921–942 (2006)

    Article  Google Scholar 

  176. Choi, K.M., Lee, H.-J., Cho, S.-W., Lee, I.W.: Modified energy dissipation algorithm for seismic structures using magnetorheological damper. KSCE J. Civ. Eng. 11(2), 121–126 (2007)

    Article  Google Scholar 

  177. Moon, S.-J., Huh, Y.-C., Jung, H.-J., Jang, D.-D., Lee, H.-J.: Sub-optimal design procedure of valve-mode magnetorheological fluid dampers for structural control. KSCE J. Civ. Eng. 15(5), 867 (2011)

    Article  Google Scholar 

  178. Bharti, S., Dumne, S., Shrimali, M.: Earthquake response of asymmetric building with MR damper. Earthquak. Eng. Eng. Vib. 13(2), 305–316 (2014)

    Article  Google Scholar 

  179. Ramallo, J., Johnson, E., Spencer Jr., B.: “Smart” base isolation systems. J. Eng. Mech. 128(10), 1088–1099 (2002)

    Article  Google Scholar 

  180. Lee, H.J., Yang, G., Jung, H.J., Spencer, B.F., Lee, I.W.: Semi-active neurocontrol of a base-isolated benchmark structure. Struct. Control Health Monit.: Offic. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 13(2–3), 682–692 (2006)

    Article  Google Scholar 

  181. Ali, S.F., Ramaswamy, A.: Hybrid structural control using magnetorheological dampers for base isolated structures. Smart. Mater. Struct. 18(5), 055011 (2009)

    Article  Google Scholar 

  182. Kim, H.-S., Roschke, P.N.: Design of fuzzy logic controller for smart base isolation system using genetic algorithm. Eng. Struct. 28(1), 84–96 (2006)

    Article  Google Scholar 

  183. Kim, H.S., Roschke, P.N.: Fuzzy control of base-isolation system using multi-objective genetic algorithm. Comput.-Aid. Civ. Infrastruct. Eng. 21(6), 436–449 (2006)

    Article  Google Scholar 

  184. Ozbulut, O.E., Bitaraf, M., Hurlebaus, S.: Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers. Eng. Struct. 33(12), 3143–3154 (2011)

    Article  Google Scholar 

  185. Mohebbi, M., Dadkhah, H.: Multi-objective semi-active base isolation system. Iran Univ. Sci. Technol. 7(3), 319–338 (2017)

    Google Scholar 

  186. Symans, M.D.: Development and experimental study of semi-active fluid damping devices for seismic protection of structures (1996)

    Google Scholar 

  187. Bakhshinezhad, S., Mohebbi, M.: Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. Structures, Elsevier (2020)

    Google Scholar 

  188. Kazemi Bidokhti, K., Moharrami, H., Fayezi, A.: Semi-active fuzzy control for seismic response reduction of building frames using SHD dampers. Struct. Control Health Monit. 19(3), 417–435 (2012)

    Article  Google Scholar 

  189. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE (1995)

    Google Scholar 

  190. Fahimi Farzam, M., Alinejad, B., Mousavi Gavgani, S.A.: Seismic control of 10-Storey Shear frame using active tuned mass dampers and optimization by particle swarm optimization algorithm. Amirkabir J. Civ. Eng. (2019)

    Google Scholar 

  191. Guclu, R., Yazici, H.: Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J. Sound Vib. 318(1–2), 36–49 (2008)

    Article  Google Scholar 

  192. Committee, A.: Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10). American Society of Civil Engineering, Reston, Virginia, Structural Engineering Institute (2010)

    Google Scholar 

  193. RP2A-WSD, A.: American petroleum institute recommended practice for planning, designing and constructing fixed offshore platforms—working stress design. American Petroleum Institute, Washington (2007)

    Google Scholar 

  194. Vamvatsikos, D., Cornell, C.A.: Incremental dynamic analysis. Earthquake Eng. Struct. Dynam. 31(3), 491–514 (2002)

    Article  Google Scholar 

  195. Golafshani, A., Bagheri, V., Ebrahimian, H., Holmas, T.: Incremental wave analysis and its application to performance-based assessment of jacket platforms. J. Constr. Steel Res. 67(10), 1649–1657 (2011)

    Article  Google Scholar 

  196. Zeinoddini, M., Nikoo, H.M., Estekanchi, H.: Endurance wave analysis (EWA) and its application for assessment of offshore structures under extreme waves. Appl. Ocean Res. 37, 98–110 (2012)

    Article  Google Scholar 

  197. Estekanchi, H., Valamanesh, V., Vafai, A.: Application of endurance time method in linear seismic analysis. Eng. Struct. 29(10), 2551–2562 (2007)

    Article  Google Scholar 

  198. Mohajernasab, S., Dastan Diznab, M.A., Tabeshpour, M.R., Mehdigholi, H., Seif, M.S.: Application of new-wave theory in the endurance wave method to assess offshore structures under the persian gulf wave conditions. J. Mar. Eng. 9(18), 71–82 (2014)

    Google Scholar 

  199. Dastan Diznab, M.A., Jahanmard, V., Tabeshpour, M.R., Seif, M.S., Mehdigholi, H.: Wave endurance time: a new concept for structural assessment under extreme waves. Proc. Instit. Mech. Eng. Part M: J. Eng. Marit. Environ. 230(2), 364–377 (2016)

    Article  Google Scholar 

  200. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194(36–38), 3902–3933 (2005)

    Article  MATH  Google Scholar 

  201. Fahimi Farzam, M., Alinejad, B., Bekdaş, G., Mousavi Gavgani, S.A.: Control of a jacket platform under wave load using ATMD and optimization by HSA. In: 6th International Conference on Harmony Search, Soft Computing and Applications (ICHSA 2020) (2020)

    Google Scholar 

  202. Farshidianfar, A., Soheili, S.: Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Iran Univ. Sci. Technol. 3(3), 409–429 (2013)

    Google Scholar 

  203. Bekdaş, G., Nigdeli, S.M.: Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction. Soil Dynam. Earthquak. Eng. 92, 443–461 (2017)

    Article  Google Scholar 

  204. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Google Scholar 

  205. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  206. Yang, X.-S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Springer (2012)

    Google Scholar 

  207. Rao, R.: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    Google Scholar 

  208. Liu, M.-Y., Chiang, W.-L., Hwang, J.-H., Chu, C.-R.: Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction. J. Wind Eng. Ind. Aerodyn. 96(6–7), 1092–1102 (2008)

    Article  Google Scholar 

  209. FEMA, P.: Quantification of Building Seismic Performance Factors. Washington, DC (2009)

    Google Scholar 

  210. Asami, T., Nishihara, O., Baz, A.M.: Analytical solutions to H and H2 optimization of dynamic vibration absorbers attached to damped linear systems. J. Vib. Acoust. 124(2), 284–295 (2002)

    Article  Google Scholar 

  211. Kaveh, A., Fazam, M.F., and Maroofiazar, R.: Comparing H2 and H algorithms for optimum design of tuned mass dampers under near-fault and far-fault earthquake motions. Period. Polytech. Civ. Eng. (2020)

    Google Scholar 

  212. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  213. Ikago, K., Saito, K., Inoue, N.: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquak. Eng. Struct. Dynam. 41(3), 453–474 (2012)

    Article  Google Scholar 

  214. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  215. Matta, E.: Performance of tuned mass dampers against near-field earthquakes. Struct. Eng. Mech. 39(5), 621–642 (2011)

    Article  Google Scholar 

  216. Giaralis, A., Taflanidis, A.: Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Struct. Control Health Monit. 25(2), e2082 (2018)

    Article  Google Scholar 

  217. Zhao, Z., Zhang, R., Jiang, Y., Pan, C.: Seismic response mitigation of structures with a friction pendulum inerter system. Eng. Struct. 193, 110–120 (2019)

    Article  Google Scholar 

  218. Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., Baba, K.: Development of seismic devices applied to ball screw: Part 1 Basic performance test of RD-series. AIJ J. Technol. Des. 5(8), 239–244 (1999)

    Article  Google Scholar 

  219. Kaveh, A., Farzam, M.F., Jalali, H.H., Maroofiazar, R.: Robust optimum design of a tuned mass damper inerter. Acta Mech. 231(9), 3871–3896 (2020)

    Article  Google Scholar 

  220. Ruiz, R., Taflanidis, A., Giaralis, A., Lopez-Garcia, D.: Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures. Eng. Struct. 177, 836–850 (2018)

    Article  Google Scholar 

  221. Marian, L., Giaralis, A.: Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probab. Eng. Mech. 38, 156–164 (2014)

    Article  Google Scholar 

  222. Marian, L., Giaralis, A.: The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting. Smart Struct. Syst. 19(6), 665–678 (2017)

    Google Scholar 

  223. Kaveh, A., Fahimi Farzam, M., Hojat Jalali, H.: Statistical seismic performance assessment of tuned mass damper inerter. Stru. Control Health Monit. e2602 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebrail Bekdaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farzam, M.F., Jalali, H.H., Gavgani, S.A.M., Kayabekir, A.E., Bekdaş, G. (2021). Current Trends in the Optimization Approaches for Optimal Structural Control. In: Nigdeli, S.M., Bekdaş, G., Kayabekir, A.E., Yucel, M. (eds) Advances in Structural Engineering—Optimization. Studies in Systems, Decision and Control, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-030-61848-3_5

Download citation

Publish with us

Policies and ethics