Skip to main content

FakeYou! - A Gamified Approach for Building and Evaluating Resilience Against Fake News

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12259)

Abstract

Nowadays fake news are heavily discussed in public and political debates. Even though the phenomenon of intended false information is rather old, misinformation reaches a new level with the rise of the internet and participatory platforms. Due to Facebook and Co., purposeful false information - often called fake news - can be easily spread by everyone. Because of high data volatility and variety in content types (text, images,...) debunking of fake news is a complex challenge. This is especially true for automated approaches, which are prone to fail validating the veracity of the information. This Work focuses on a gamified approach to strengthen the resilience of consumers towards fake news. The game FakeYou motivates its players to critically analyze headlines regarding their trustworthiness. Further, the game follows a “learning by doing strategy”: by generating own fake headlines, users should experience the concepts of convincing fake headline formulations. We introduce the game itself, as well as the underlying technical infrastructure. A first evaluation study shows, that users tend to use specific stylistic devices to generate fake news. Further, the results indicate, that creating good fakes and identifying correct headlines are challenging and hard to learn.

Keywords

  • Fake news
  • News
  • Game
  • Mobile game
  • Misinformation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61841-4_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-61841-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. 1.

    https://breakyourownnews.com/.

  2. 2.

    https://www.mimikama.at.

  3. 3.

    https://getbadnews.com/.

  4. 4.

    See: https://ionicframework.com/.

  5. 5.

    See: https://angular.io/.

  6. 6.

    See: https://www.nginx.com/.

  7. 7.

    See: https://www.djangoproject.com/.

  8. 8.

    See: https://www.mysql.com/de/.

  9. 9.

    See: https://scrapy.org/.

  10. 10.

    For normalization the number of fake/correct headlines containing the character or punctuation is divided by the total number of fake/correct headlines.

  11. 11.

    Fooling two opponents in each of the three rounds sums up in a maximum fake score of 18 (= (3 + 3) * 3).

  12. 12.

    Betting the correct headline three times in a game leads to a maximum correct bet score of 6 (= 2 * 3).

References

  1. Balmas, M.: When fake news becomes real: combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism. Commun. Res. 41(3), 430–454 (2014). https://doi.org/10.1177/0093650212453600

    CrossRef  Google Scholar 

  2. Bannatyne, M., Piekarzewska, A., Koch, C.: If you could believe your eyes: images and fake news, pp. 128–133 (2019). https://doi.org/10.1109/IV-2.2019.00034

  3. Barrera, O., Guriev, S., Henry, E., Zhuravskaya, E.: Facts, alternative facts, and fact checking in times of post-truth politics. J. Public Econ. 182, 104123 (2020). https://doi.org/10.1016/j.jpubeco.2019.104123

    CrossRef  Google Scholar 

  4. Berinsky, A.J.: Rumors and health care reform: experiments in political misinformation. Br. J. Polit. Sci. 47(2), 241–262 (2017). https://doi.org/10.1017/S0007123415000186

    CrossRef  Google Scholar 

  5. Bovet, A., Makse, H.A.: Influence of fake news in Twitter during the 2016 US presidential election. Nature Commun. 10(1), 1–14 (2019). https://doi.org/10.1038/s41467-018-07761-2

    CrossRef  Google Scholar 

  6. Burkhardt, J.M.: History of fake news. Libr. Technol. Rep. 53(8), 5–9 (2017)

    Google Scholar 

  7. Dang, L., Hassan, S., Im, S., Moon, H.: Face image manipulation detection based on a convolutional neural network. Expert. Syst. Appl. 129, 156–168 (2019). https://doi.org/10.1016/j.eswa.2019.04.005

    CrossRef  Google Scholar 

  8. Friggeri, A., Adamic, L.A., Eckles, D., Cheng, J.: Rumor cascades. In: Adar, E., Resnick, P., Choudhury, M.D., Hogan, B., Oh, A.H. (eds.) Proceedings of the Eighth International Conference on Weblogs and Social Media, ICWSM 2014, Ann Arbor, Michigan, USA, June 1–4, 2014. The AAAI Press (2014), http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8122

  9. Gunawan, F., Suwandi, V.: Identifying the most influencing characteristics of fake news. ICIC Express Lett. Part B: Appl. 11(1), 93–101 (2020). https://doi.org/10.24507/icicelb.11.01.93

    CrossRef  Google Scholar 

  10. Haigh, M., Haigh, T., Kozak, N.: Stopping fake news: the work practices of peer-to-peer counter propaganda. Journalism Stud. 19(14), 2062–2087 (2018). https://doi.org/10.1080/1461670X.2017.1316681

    CrossRef  Google Scholar 

  11. Hameleers, M., Powell, T.E., Meer, T.G.V.D., Bos, L.: A picture paints a thousand lies? the effects and mechanisms of multimodal disinformation and rebuttals disseminated via social media. Polit. Commun. 1–21 (2020). https://doi.org/10.1080/10584609.2019.1674979

  12. Katsaounidou, A., Vrysis, L., Kotsakis, R., Dimoulas, C., Veglis, A.: MathE the game: a serious game for education and training in news verification. Education Sciences 9(2), 155 (2019). https://doi.org/10.3390/educsci9020155

    CrossRef  Google Scholar 

  13. Lewandowsky, S., Ecker, U.K.H., Seifert, C.M., Schwarz, N., Cook, J.: Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Public Interest 13(3), 106–131 (2012). https://doi.org/10.1177/1529100612451018. PMID: 26173286

    CrossRef  Google Scholar 

  14. Lutzke, L., Drummond, C., Slovic, P., Árvai, J.: Priming critical thinking: simple interventions limit the influence of fake news about climate change on Facebook. Global Environ. Change 58, 101964 (2019). https://doi.org/10.1016/j.gloenvcha.2019.101964

    CrossRef  Google Scholar 

  15. Nash, R.A., Wade, K.A., Brewer, R.J.: Why do doctored images distort memory? Conscious. Cogn. 18(3), 773–780 (2009)

    CrossRef  Google Scholar 

  16. Parikh, S., Khedia, S., Atrey, P.: A framework to detect fake tweet images on social media, pp. 104–110 (2019). https://doi.org/10.1109/BigMM.2019.00-37

  17. Posetti, J., Matthews, A.: A short guide to the history of ‘Fake News’ and disinformation: a new ICFJ learning module (2018). https://www.icfj.org/news/short-guide-history-fake-news-and-disinformation-new-icfj-learning-module

  18. Quandt, T., Frischlich, L., Boberg, S., Schatto-Eckrodt, T.: Fake news, pp. 1–6. American Cancer Society (2019). https://doi.org/10.1002/9781118841570.iejs0128, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118841570.iejs0128

  19. Roozenbeek, J., van der Linden, S.: Fake news game confers psychological resistance against online misinformation. Palgrave Commun. 5(1), 1–10 (2019). https://doi.org/10.1057/s41599-019-0279-9

    CrossRef  Google Scholar 

  20. Sacchi, D.L., Agnoli, F., Loftus, E.F.: Changing history: doctored photographs affect memory for past public events. Appl. Cogn. Psychol. Official J. Soc. Appl. Res. Mem. Cogn. 21(8), 1005–1022 (2007)

    Google Scholar 

  21. Tandoc Jr., E.C., Lim, Z.W., Ling, R.: Defining “Fake News”: a typology of scholarly definitions. Digital Journalism 6(2), 137–153 (2018). https://doi.org/10.1080/21670811.2017.1360143

    CrossRef  Google Scholar 

  22. Wade, K.A., Garry, M., Read, J.D., Lindsay, D.S.: A picture is worth a thousand lies: using false photographs to create false childhood memories. Psychon. Bull. Rev. 9(3), 597–603 (2002)

    CrossRef  Google Scholar 

Download references

Acknowlegments

The research leading to these results received funding by the Federal Ministry of Education and Research, Germany (Project: PropStop, FKZ 16KIS0495K), the federal state of North Rhine-Westphalia and the European Regional Development Fund (EFRE.NRW 2014–2020, Project: MODERAT!, No. CM-2-2-036a), and the Ministry of Culture and Science of the federal state of North Rhine-Westphalia (Project: DemoResil, FKZ 005-1709-0001, EFRE-0801431). All authors appreciate the support of the European Research Center for Information Systems (ERCIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Clever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Clever, L. et al. (2020). FakeYou! - A Gamified Approach for Building and Evaluating Resilience Against Fake News. In: van Duijn, M., Preuss, M., Spaiser, V., Takes, F., Verberne, S. (eds) Disinformation in Open Online Media. MISDOOM 2020. Lecture Notes in Computer Science(), vol 12259. Springer, Cham. https://doi.org/10.1007/978-3-030-61841-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61841-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61840-7

  • Online ISBN: 978-3-030-61841-4

  • eBook Packages: Computer ScienceComputer Science (R0)