Abstract
This paper aptly reviews the advances in the application of ionic liquids in the recycling of single-use plastic and lignin. It explores the predominant use of this green solvent in recycling these wastes. Waste remediation processes often prove laborious employing traditional methods. The use of ionic liquids reveals bespoke advantages over the use of these conventional solvents. Compared to available researches and data of other solvents, studies on ionic liquids are yet to take full shape. More researches and studies on this green solvent are still required and useful in fully maximizing the field and to further promote sustainability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, C. J., Earle, J., & Seddon, K. R. (2000). Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Royal Society of Chemistry Journal, pp. 21–23.
Al-sabagh, A. M., Yehia, F. Z., Eshaq, Gh., Rabie, A. M., & ElMetwally, A. E. (2015). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2015.03.001.
Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 301–312. https://doi.org/10.1039/b918763b.
Berthod, A., Ruiz-Ángel, M. J., & Carda-Broch, S. (2018). Recent advances on ionic liquid uses in separation techniques. Journal of Chromatography A, 1559, 2–16.
Bicak, N. (2005). A new ionic liquid: 2-hydroxy ethylammoniumformate. Journal of Molecular Liquids, 116, 15–18. https://doi.org/10.1016/j.molliq.2004.03.006.
Broderick, E. M., Serban, M., Mezza, B., & Bhattacharyya, A. (2017). Scientific approach for a cleaner environment using ionic liquids. ACS Sustainable Chemistry & Engineering, 5, 3681–3684.
Cao, Y., & Mu, T. (2014). Comprehensive investigation on the thermal stability of 66 ionic liquids by Thermogravimetric analysis. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/ie5009597.
Chio, C., Sain, M., & Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews Elsevier Ltd, 107, 232–249.
Clarke, C. J., Tu, W. C., Levers, O., Brohl, A. & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 118, 747 − 800.
Dai, A. J., Patti, A., Longe, L., Garnier, G., & Saito, K. (2007). Oxidized lignin depolymerisation using formate ionic liquid as catalyst and solvent. ChemCatChem. https://doi.org/10.1002/cctc.201700632.
Gregorio, G. F., Weber, C. C., Grasvik, J., Welton, T., Brandt, A., & Hallett, J. (2006). Green Chemistry. https://doi.org/10.1039/C6GC01295G.
Holbrey, J. D., & Rogers, R. D. (2002). Green chemistry and ionic liquids: Synergies and ironies green chemistry approach—process management. In R. Rogers, et al. (Eds.), Ionic Liquids (pp. 2–14). Washington, DC: ACS Symposium Series. American Chemical Society.
Hong, S. M., Chen, E. Y., & Chem., G. (2017). Chemically recyclable polymers: A circular economy approach to sustainability. Green chemistry, 19, 3692.
Iannone, F., Casiello, M., Monopoli, A., Pietro, C., Sportelli, M. C., Picca, R. A., et al. (2017). Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. Journal of Molecular Catalysis A: Chemical, 426, 107–116. https://doi.org/10.1016/j.molcata.2016.11.006.
Kamimura, A., & Yamamoto, S. (2007). An Efficient Method To Depolymerize Polyamide Plastics: A New Use of Ionic Liquids, 9(13), 2533–2535.
Kamimura, A., Yamamoto, S., & Yamada, K. (2011). Depolymerization of unsaturated polyesters and waste fiber-reinforced plastics by using ionic liquids: the use of microwaves to accelerate the reaction rate. 0195. Chemsuschem, 4, 644–649.
Kamimura, A., Shiramatsu, Y., & Kawamoto, T. (2019). Depolymerization of polyamide 6 in hydrophilic ionic liquids. Green Energy and Environment, 4(2), 166–170.
Kaza, S., Yao, L., Bhada-Tata, P., & Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Group. https://doi.org/10.1596/978-1-4648-1329-0.
Klein, R., Zech, O., Maurer, E., Kellermeier, M., & Kunz, W. (2011). Oligoether Carboxylates: Task-specific room-temperature ionic liquids. The Journal of Physical Chemistry B, 115, 8961–8969.
Meszaros, M. W. (1995). Advances in plastics recycling. In C. Rader (Ed.), Plastics, Rubber, and Paper Recycling, ACS Symposium Series; American Chemical Society: Washington, DC, pp. 170–182.
Mourshed, M., Masud, M. H., Rashid, F., & Joardder, M. U. H. (2017) Towards the effective plastic waste management in Bangladesh. Environmental Science and Pollution Research.
National Center for Biotechnology Information (2021) PubChem Compound Summary for CID 11212667. Retrieved February 21, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/11212667.
Nelson, W. M. (2002). Are ionic liquids green solvents? ionic liquids as greener solvents. In R. Rogers, et al. (Eds.), Ionic Liquids (pp. 30–41). Washington, DC: ACS Symposium Series. American Chemical Society.
Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2015). Lignin oxidation and depolymerization in ionic liquids. Royal Society of Chemistry. https://doi.org/10.1039/c5gc01950h.
Ren, R. X. (2003). Green synthesis of ionic liquids for green Chemistry. In R Rogers (Ed.) Ionic Liquids as Green Solvents, ACS Symposium Series. American Chemical Society Washington, DC, pp. 70–81.
Scott, M., Deuss, P. J., Vries, J. G., Prechtl, M. H. G., & Barta, K. (2015). Catalysis Science & Technology lignin β -O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology. Royal Society of Chemistry. https://doi.org/10.1039/C5CY01554E.
Singh, S. K., Banerjee, S., Vanka, K., & Dhepe, L. (2017). Understanding interactions between lignin and ionic liquids with experimental and theoretical studies during catalytic. Catalysis Today. Elsevier B.V. https://doi.org/10.1016/j.cattod.2017.09.050.
Stark, K., Taccardi, N., Bçsmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem, 3, 719–723.
Szalaty, T. J., Klapiszewski, Ł., & Moszy, D. (2018). Catalyst-free activation of kraft lignin in air using hydrogen sulfate ionic liquids. International Journal of Biological Macromolecules, 119, 431–437.
Tan, S. S. Y., & Macfarlane, D. R. (2009). Ionic liquids in biomass processing. Topics in Current Chemistry. https://doi.org/10.1007/128.
Thierry, A. M., Thierry, M., Majira, A., Pégot, B., Cézard, L., Bourdreux, F., et al. (2017). Imidazolium based Ionic liquids as efficient reagents for lignin CO bond cleavage. Chemsuschem. https://doi.org/10.1002/cssc.201701668.
Tolesa, L. D., Gupta, B. S., & Lee, M. (2017). The chemistry of ammonium-based ionic liquids in depolymerization process of lignin. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2017.10.054.
Tolesa, L. D., Gupta, B. S., & Lee, M. (2019). Degradation of lignin with aqueous ammonium-based ionic liquid solutions under milder condition. New J: Chem. https://doi.org/10.1039/C8NJ05185B.
Wang, X., & Qian, E. W. (2020). Extraction and modification of lignin from red pine using ionic liquid. Journal of the Japan Petroleum Institute, 63(2), 102–105.
Wang, H., Tucker, M., & Ji, Y. (2013). Recent development in chemical depolymerization of lignin. Journal of Applied Chemistry. 2013 Article ID 838645. https://doi.org/10.1155/2013/838645.
Wang, B., Qin, L., Mu, T., Xue, Z., & Gao, G. (2017). Are ionic liquids chemically stable? Chemical Reviews, 117, 7113–7131.
Woidasky, J. (2018). Plastics recycling. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a21.
Yang, Y., Zhang, C., & Zhang, Z. C. (2018). Advances in catalytic transformations of carbohydrates and lignin in ionic liquids and mechanistic studies. WIREs Energy Environ, 284, 1–13.
Zhang, B., li, C. Dai, T., Huber, G. W., Wang A., & Zhang, T. (2015). Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids. Journal RSC. https://doi.org/10.1039/C5RA18738A.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Evans, E., Egharevba, S. (2021). Applications of Ionic Liquids in Plastic and Lignin Waste Recycling. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-61837-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61836-0
Online ISBN: 978-3-030-61837-7
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)