Adams, C. J., Earle, J., & Seddon, K. R. (2000). Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Royal Society of Chemistry Journal, pp. 21–23.
Google Scholar
Al-sabagh, A. M., Yehia, F. Z., Eshaq, Gh., Rabie, A. M., & ElMetwally, A. E. (2015). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2015.03.001.
Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 301–312. https://doi.org/10.1039/b918763b.
Berthod, A., Ruiz-Ángel, M. J., & Carda-Broch, S. (2018). Recent advances on ionic liquid uses in separation techniques. Journal of Chromatography A, 1559, 2–16.
Google Scholar
Bicak, N. (2005). A new ionic liquid: 2-hydroxy ethylammoniumformate. Journal of Molecular Liquids, 116, 15–18. https://doi.org/10.1016/j.molliq.2004.03.006.
CAS
CrossRef
Google Scholar
Broderick, E. M., Serban, M., Mezza, B., & Bhattacharyya, A. (2017). Scientific approach for a cleaner environment using ionic liquids. ACS Sustainable Chemistry & Engineering, 5, 3681–3684.
CAS
CrossRef
Google Scholar
Cao, Y., & Mu, T. (2014). Comprehensive investigation on the thermal stability of 66 ionic liquids by Thermogravimetric analysis. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/ie5009597.
Chio, C., Sain, M., & Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews Elsevier Ltd, 107, 232–249.
CAS
CrossRef
Google Scholar
Clarke, C. J., Tu, W. C., Levers, O., Brohl, A. & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 118, 747 − 800.
Google Scholar
Dai, A. J., Patti, A., Longe, L., Garnier, G., & Saito, K. (2007). Oxidized lignin depolymerisation using formate ionic liquid as catalyst and solvent. ChemCatChem. https://doi.org/10.1002/cctc.201700632.
Gregorio, G. F., Weber, C. C., Grasvik, J., Welton, T., Brandt, A., & Hallett, J. (2006). Green Chemistry. https://doi.org/10.1039/C6GC01295G.
CrossRef
Google Scholar
Holbrey, J. D., & Rogers, R. D. (2002). Green chemistry and ionic liquids: Synergies and ironies green chemistry approach—process management. In R. Rogers, et al. (Eds.), Ionic Liquids (pp. 2–14). Washington, DC: ACS Symposium Series. American Chemical Society.
CrossRef
Google Scholar
Hong, S. M., Chen, E. Y., & Chem., G. (2017). Chemically recyclable polymers: A circular economy approach to sustainability. Green chemistry, 19, 3692.
Google Scholar
Iannone, F., Casiello, M., Monopoli, A., Pietro, C., Sportelli, M. C., Picca, R. A., et al. (2017). Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. Journal of Molecular Catalysis A: Chemical, 426, 107–116. https://doi.org/10.1016/j.molcata.2016.11.006.
CAS
CrossRef
Google Scholar
Kamimura, A., & Yamamoto, S. (2007). An Efficient Method To Depolymerize Polyamide Plastics: A New Use of Ionic Liquids, 9(13), 2533–2535.
CAS
Google Scholar
Kamimura, A., Yamamoto, S., & Yamada, K. (2011). Depolymerization of unsaturated polyesters and waste fiber-reinforced plastics by using ionic liquids: the use of microwaves to accelerate the reaction rate. 0195. Chemsuschem, 4, 644–649.
CAS
CrossRef
Google Scholar
Kamimura, A., Shiramatsu, Y., & Kawamoto, T. (2019). Depolymerization of polyamide 6 in hydrophilic ionic liquids. Green Energy and Environment, 4(2), 166–170.
CrossRef
Google Scholar
Kaza, S., Yao, L., Bhada-Tata, P., & Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Group. https://doi.org/10.1596/978-1-4648-1329-0.
Klein, R., Zech, O., Maurer, E., Kellermeier, M., & Kunz, W. (2011). Oligoether Carboxylates: Task-specific room-temperature ionic liquids. The Journal of Physical Chemistry B, 115, 8961–8969.
CAS
CrossRef
Google Scholar
Meszaros, M. W. (1995). Advances in plastics recycling. In C. Rader (Ed.), Plastics, Rubber, and Paper Recycling, ACS Symposium Series; American Chemical Society: Washington, DC, pp. 170–182.
Google Scholar
Mourshed, M., Masud, M. H., Rashid, F., & Joardder, M. U. H. (2017) Towards the effective plastic waste management in Bangladesh. Environmental Science and Pollution Research.
Google Scholar
National Center for Biotechnology Information (2021) PubChem Compound Summary for CID 11212667. Retrieved February 21, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/11212667.
Nelson, W. M. (2002). Are ionic liquids green solvents? ionic liquids as greener solvents. In R. Rogers, et al. (Eds.), Ionic Liquids (pp. 30–41). Washington, DC: ACS Symposium Series. American Chemical Society.
CrossRef
Google Scholar
Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2015). Lignin oxidation and depolymerization in ionic liquids. Royal Society of Chemistry. https://doi.org/10.1039/c5gc01950h.
Ren, R. X. (2003). Green synthesis of ionic liquids for green Chemistry. In R Rogers (Ed.) Ionic Liquids as Green Solvents, ACS Symposium Series. American Chemical Society Washington, DC, pp. 70–81.
Google Scholar
Scott, M., Deuss, P. J., Vries, J. G., Prechtl, M. H. G., & Barta, K. (2015). Catalysis Science & Technology lignin β -O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology. Royal Society of Chemistry. https://doi.org/10.1039/C5CY01554E.
CrossRef
Google Scholar
Singh, S. K., Banerjee, S., Vanka, K., & Dhepe, L. (2017). Understanding interactions between lignin and ionic liquids with experimental and theoretical studies during catalytic. Catalysis Today. Elsevier B.V. https://doi.org/10.1016/j.cattod.2017.09.050.
Stark, K., Taccardi, N., Bçsmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem, 3, 719–723.
CrossRef
Google Scholar
Szalaty, T. J., Klapiszewski, Ł., & Moszy, D. (2018). Catalyst-free activation of kraft lignin in air using hydrogen sulfate ionic liquids. International Journal of Biological Macromolecules, 119, 431–437.
CAS
CrossRef
Google Scholar
Tan, S. S. Y., & Macfarlane, D. R. (2009). Ionic liquids in biomass processing. Topics in Current Chemistry. https://doi.org/10.1007/128.
Thierry, A. M., Thierry, M., Majira, A., Pégot, B., Cézard, L., Bourdreux, F., et al. (2017). Imidazolium based Ionic liquids as efficient reagents for lignin CO bond cleavage. Chemsuschem. https://doi.org/10.1002/cssc.201701668.
CrossRef
Google Scholar
Tolesa, L. D., Gupta, B. S., & Lee, M. (2017). The chemistry of ammonium-based ionic liquids in depolymerization process of lignin. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2017.10.054.
Tolesa, L. D., Gupta, B. S., & Lee, M. (2019). Degradation of lignin with aqueous ammonium-based ionic liquid solutions under milder condition. New J: Chem. https://doi.org/10.1039/C8NJ05185B.
CrossRef
Google Scholar
Wang, X., & Qian, E. W. (2020). Extraction and modification of lignin from red pine using ionic liquid. Journal of the Japan Petroleum Institute, 63(2), 102–105.
CrossRef
Google Scholar
Wang, H., Tucker, M., & Ji, Y. (2013). Recent development in chemical depolymerization of lignin. Journal of Applied Chemistry. 2013 Article ID 838645. https://doi.org/10.1155/2013/838645.
Wang, B., Qin, L., Mu, T., Xue, Z., & Gao, G. (2017). Are ionic liquids chemically stable? Chemical Reviews, 117, 7113–7131.
CAS
CrossRef
Google Scholar
Woidasky, J. (2018). Plastics recycling. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a21.
Yang, Y., Zhang, C., & Zhang, Z. C. (2018). Advances in catalytic transformations of carbohydrates and lignin in ionic liquids and mechanistic studies. WIREs Energy Environ, 284, 1–13.
Google Scholar
Zhang, B., li, C. Dai, T., Huber, G. W., Wang A., & Zhang, T. (2015). Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids. Journal RSC. https://doi.org/10.1039/C5RA18738A.