Skip to main content

Applications of Ionic Liquids in Plastic and Lignin Waste Recycling

Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

This paper aptly reviews the advances in the application of ionic liquids in the recycling of single-use plastic and lignin. It explores the predominant use of this green solvent in recycling these wastes. Waste remediation processes often prove laborious employing traditional methods. The use of ionic liquids reveals bespoke advantages over the use of these conventional solvents. Compared to available researches and data of other solvents, studies on ionic liquids are yet to take full shape. More researches and studies on this green solvent are still required and useful in fully maximizing the field and to further promote sustainability.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61837-7_20
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-61837-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  • Adams, C. J., Earle, J., & Seddon, K. R. (2000). Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Royal Society of Chemistry Journal, pp. 21–23.

    Google Scholar 

  • Al-sabagh, A. M., Yehia, F. Z., Eshaq, Gh., Rabie, A. M., & ElMetwally, A. E. (2015). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2015.03.001.

  • Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 301–312. https://doi.org/10.1039/b918763b.

  • Berthod, A., Ruiz-Ángel, M. J., & Carda-Broch, S. (2018). Recent advances on ionic liquid uses in separation techniques. Journal of Chromatography A, 1559, 2–16.

    Google Scholar 

  • Bicak, N. (2005). A new ionic liquid: 2-hydroxy ethylammoniumformate. Journal of Molecular Liquids, 116, 15–18. https://doi.org/10.1016/j.molliq.2004.03.006.

    CAS  CrossRef  Google Scholar 

  • Broderick, E. M., Serban, M., Mezza, B., & Bhattacharyya, A. (2017). Scientific approach for a cleaner environment using ionic liquids. ACS Sustainable Chemistry & Engineering, 5, 3681–3684.

    CAS  CrossRef  Google Scholar 

  • Cao, Y., & Mu, T. (2014). Comprehensive investigation on the thermal stability of 66 ionic liquids by Thermogravimetric analysis. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/ie5009597.

  • Chio, C., Sain, M., & Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews Elsevier Ltd, 107, 232–249.

    CAS  CrossRef  Google Scholar 

  • Clarke, C. J., Tu, W. C., Levers, O., Brohl, A. & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 118, 747 − 800.

    Google Scholar 

  • Dai, A. J., Patti, A., Longe, L., Garnier, G., & Saito, K. (2007). Oxidized lignin depolymerisation using formate ionic liquid as catalyst and solvent. ChemCatChem. https://doi.org/10.1002/cctc.201700632.

  • Gregorio, G. F., Weber, C. C., Grasvik, J., Welton, T., Brandt, A., & Hallett, J. (2006). Green Chemistry. https://doi.org/10.1039/C6GC01295G.

    CrossRef  Google Scholar 

  • Holbrey, J. D., & Rogers, R. D. (2002). Green chemistry and ionic liquids: Synergies and ironies green chemistry approach—process management. In R. Rogers, et al. (Eds.), Ionic Liquids (pp. 2–14). Washington, DC: ACS Symposium Series. American Chemical Society.

    CrossRef  Google Scholar 

  • Hong, S. M., Chen, E. Y., & Chem., G. (2017). Chemically recyclable polymers: A circular economy approach to sustainability. Green chemistry, 19, 3692.

    Google Scholar 

  • Iannone, F., Casiello, M., Monopoli, A., Pietro, C., Sportelli, M. C., Picca, R. A., et al. (2017). Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. Journal of Molecular Catalysis A: Chemical, 426, 107–116. https://doi.org/10.1016/j.molcata.2016.11.006.

    CAS  CrossRef  Google Scholar 

  • Kamimura, A., & Yamamoto, S. (2007). An Efficient Method To Depolymerize Polyamide Plastics: A New Use of Ionic Liquids, 9(13), 2533–2535.

    CAS  Google Scholar 

  • Kamimura, A., Yamamoto, S., & Yamada, K. (2011). Depolymerization of unsaturated polyesters and waste fiber-reinforced plastics by using ionic liquids: the use of microwaves to accelerate the reaction rate. 0195. Chemsuschem, 4, 644–649.

    CAS  CrossRef  Google Scholar 

  • Kamimura, A., Shiramatsu, Y., & Kawamoto, T. (2019). Depolymerization of polyamide 6 in hydrophilic ionic liquids. Green Energy and Environment, 4(2), 166–170.

    CrossRef  Google Scholar 

  • Kaza, S., Yao, L., Bhada-Tata, P., & Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Group. https://doi.org/10.1596/978-1-4648-1329-0.

  • Klein, R., Zech, O., Maurer, E., Kellermeier, M., & Kunz, W. (2011). Oligoether Carboxylates: Task-specific room-temperature ionic liquids. The Journal of Physical Chemistry B, 115, 8961–8969.

    CAS  CrossRef  Google Scholar 

  • Meszaros, M. W. (1995). Advances in plastics recycling. In C. Rader (Ed.), Plastics, Rubber, and Paper Recycling, ACS Symposium Series; American Chemical Society: Washington, DC, pp. 170–182.

    Google Scholar 

  • Mourshed, M., Masud, M. H., Rashid, F., & Joardder, M. U. H. (2017) Towards the effective plastic waste management in Bangladesh. Environmental Science and Pollution Research.

    Google Scholar 

  • National Center for Biotechnology Information (2021) PubChem Compound Summary for CID 11212667. Retrieved February 21, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/11212667.

  • Nelson, W. M. (2002). Are ionic liquids green solvents? ionic liquids as greener solvents. In R. Rogers, et al. (Eds.), Ionic Liquids (pp. 30–41). Washington, DC: ACS Symposium Series. American Chemical Society.

    CrossRef  Google Scholar 

  • Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2015). Lignin oxidation and depolymerization in ionic liquids. Royal Society of Chemistry. https://doi.org/10.1039/c5gc01950h.

  • Ren, R. X. (2003). Green synthesis of ionic liquids for green Chemistry. In R Rogers (Ed.) Ionic Liquids as Green Solvents, ACS Symposium Series. American Chemical Society Washington, DC, pp. 70–81.

    Google Scholar 

  • Scott, M., Deuss, P. J., Vries, J. G., Prechtl, M. H. G., & Barta, K. (2015). Catalysis Science & Technology lignin β -O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology. Royal Society of Chemistry. https://doi.org/10.1039/C5CY01554E.

    CrossRef  Google Scholar 

  • Singh, S. K., Banerjee, S., Vanka, K., & Dhepe, L. (2017). Understanding interactions between lignin and ionic liquids with experimental and theoretical studies during catalytic. Catalysis Today. Elsevier B.V. https://doi.org/10.1016/j.cattod.2017.09.050.

  • Stark, K., Taccardi, N., Bçsmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem, 3, 719–723.

    CrossRef  Google Scholar 

  • Szalaty, T. J., Klapiszewski, Ł., & Moszy, D. (2018). Catalyst-free activation of kraft lignin in air using hydrogen sulfate ionic liquids. International Journal of Biological Macromolecules, 119, 431–437.

    CAS  CrossRef  Google Scholar 

  • Tan, S. S. Y., & Macfarlane, D. R. (2009). Ionic liquids in biomass processing. Topics in Current Chemistry. https://doi.org/10.1007/128.

  • Thierry, A. M., Thierry, M., Majira, A., Pégot, B., Cézard, L., Bourdreux, F., et al. (2017). Imidazolium based Ionic liquids as efficient reagents for lignin CO bond cleavage. Chemsuschem. https://doi.org/10.1002/cssc.201701668.

    CrossRef  Google Scholar 

  • Tolesa, L. D., Gupta, B. S., & Lee, M. (2017). The chemistry of ammonium-based ionic liquids in depolymerization process of lignin. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2017.10.054.

  • Tolesa, L. D., Gupta, B. S., & Lee, M. (2019). Degradation of lignin with aqueous ammonium-based ionic liquid solutions under milder condition. New J: Chem. https://doi.org/10.1039/C8NJ05185B.

    CrossRef  Google Scholar 

  • Wang, X., & Qian, E. W. (2020). Extraction and modification of lignin from red pine using ionic liquid. Journal of the Japan Petroleum Institute, 63(2), 102–105.

    CrossRef  Google Scholar 

  • Wang, H., Tucker, M., & Ji, Y. (2013). Recent development in chemical depolymerization of lignin. Journal of Applied Chemistry. 2013 Article ID 838645. https://doi.org/10.1155/2013/838645.

  • Wang, B., Qin, L., Mu, T., Xue, Z., & Gao, G. (2017). Are ionic liquids chemically stable? Chemical Reviews, 117, 7113–7131.

    CAS  CrossRef  Google Scholar 

  • Woidasky, J. (2018). Plastics recycling. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a21.

  • Yang, Y., Zhang, C., & Zhang, Z. C. (2018). Advances in catalytic transformations of carbohydrates and lignin in ionic liquids and mechanistic studies. WIREs Energy Environ, 284, 1–13.

    Google Scholar 

  • Zhang, B., li, C. Dai, T., Huber, G. W., Wang A., & Zhang, T. (2015). Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids. Journal RSC. https://doi.org/10.1039/C5RA18738A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egwim Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Evans, E., Egharevba, S. (2021). Applications of Ionic Liquids in Plastic and Lignin Waste Recycling. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_20

Download citation