Skip to main content

Multi-utilisation of Cow Dung as Biomass

  • Chapter
  • First Online:
Sustainable Bioconversion of Waste to Value Added Products

Abstract

Cow dung or cow manure is a heterogeneous substance excreted by bovine animal species as waste. It also contains water, microbiota, feed scraps and dead skin. The demand for livestock and dairy products has led to the exponential growth in cow dung generation in the past decades. Cow dung is primarily disposed in the environment, used as organic fertiliser or used as solid fuel in rural areas. However, severe environmental and ecological damage has been caused by indiscriminate disposal and improper elimination of cow dung into the surrounding. This alarming problem can be addressed by converting cow dung into biofuel via thermochemical process or be used as organic fertiliser after vermicompost treatment. Moreover, cow dung can be used for electricity production, heat, biochar and friction composites. A cow dung to biofuel conversion systems should be efficient and well controlled to offer economically feasible energy generation and limit environmental pollution. Hence, the objective of this chapter is to analyse the physio-chemical properties of cow dung and evaluate its potential for multi-utilisation as biofuel and organic fertiliser. Moreover, the chapter discusses advanced processes of thermochemical energetic conversion of cow dung to assess its potential as a sustainable renewable source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayi, O. C. (2007). User acceptability of sustainable soil fertility technologies: Lessons from farmers’ knowledge, attitude and practice in southern Africa. Journal of Sustainable Agriculture, 30(3), 21–40.

    Article  Google Scholar 

  • Ananno, A. A., Masud, M. H., Dabnichki, P., & Ahmed, A. (2020). Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy, 196, 270–286.

    Article  Google Scholar 

  • Ananno, A. A., Masud, M. H., Chowdhury, S. A., Dabnichki, P., Ahmed, N., & Arefin, A. M. E. (2021). Sustainable food waste management model for Bangladesh. Sustainable Production and Consumption, 27, 35–51.

    Google Scholar 

  • Benitez, E., Sainz, H., Melgar, R., & Nogales, R. (2002). Vermicomposting of a lignocellulosic waste from olive oil industry: A pilot scale study. Waste Management & Research, 20(2), 134–142.

    Article  CAS  Google Scholar 

  • Carlin, N. T., Annamalai, K., Harman, W. L., & Sweeten, J. M. (2009). The economics of reburning with cattle manure-based biomass in existing coal-fired power plants for NOx and CO2 emissions control. Biomass and Bioenergy, 33(9), 1139–1157.

    Article  CAS  Google Scholar 

  • Carlin, N. T., Annamalai, K., Oh, H., Ariza, G. G., Lawrence, B., Sweeten, J. M., Heflin, K., & Harman, W. L. (2011). Co-combustion and gasification of coal and cattle biomass: a review of research and experimentation. In Green Energy (pp. 123–179). Springer.

    Google Scholar 

  • DeMartini, A. (2017). Reducing the environmental impact of cows’ waste.

    Google Scholar 

  • Duncan J. (2005). Composting chicken manure. WSU Coop. Extension, King Cty. Master Gard. Coop. Ext. Livest. Advis.

    Google Scholar 

  • Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot-scale study. Bioresource Technology, 63(3), 205–211.

    Article  CAS  Google Scholar 

  • FAO. (2020). Livestock manure storage.

    Google Scholar 

  • Font-Palma, C. (2019). Methods for the treatment of cattle manure—A review. C—Journal Carbon Research, 5(2), 27.

    Google Scholar 

  • Fulhage, C. D. (2000). Reduce environmental problems with proper land application of animal manure (2000).

    Google Scholar 

  • Garg, V. K., & Kaushik, P. (2005). Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresource Technology, 96(9), 1063–1071.

    Article  CAS  Google Scholar 

  • Georgacakis, D., Sievers, D. M., & Iannotti, E. L. (1982). Buffer stability in manure digesters. Agricultural Wastes, 4(6), 427–441.

    Article  CAS  Google Scholar 

  • Jhariya, M. K., & Raj, A. (2014). Human welfare from biodiversity. Agrobios Newsletter, 12(9), 89–91.

    Google Scholar 

  • Jjagwe, J., Komakech, A. J., Karungi, J., Amann, A., Wanyama, J., & Lederer, J. (2019). Assessment of a cattle manure vermicomposting system using material flow analysis: A case study from Uganda. Sustainability, 11(19), 5173.

    Article  CAS  Google Scholar 

  • Joardder, M. U. H., Halder P. K., Rahim, M. A., & Masud M. H. (2017). Solar pyrolysis: Converting waste into asset using solar energy. In Clean energy for sustainable development (pp. 213–235). Elsevier.

    Google Scholar 

  • Kiran, Y. K., et al. (2017). Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 16(3), 725–734.

    CAS  Google Scholar 

  • Kirchmann, H., & Witter, E. (1989). Ammonia volatilisation during aerobic and anaerobic manure decomposition. Plant and Soil, 115(1), 35–41.

    Article  CAS  Google Scholar 

  • Kirchmann, H., & Witter, E. (1992). Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresource Technology, 40(2), 137–142.

    Article  CAS  Google Scholar 

  • Kirchmann, H. (1985). Losses, plant uptake and utilisation of manure nitrogen during a production cycle.

    Google Scholar 

  • Levi-Minzi, R., Riffaldi, R., & Saviozzi, A. (1986). Organic matter and nutrients in fresh and mature farmyard manure. Agricultural Wastes, 16(3), 225–236.

    Article  Google Scholar 

  • Ma, Y., Shen, S., Tong, J., Ye, W., Yang, Y., & Zhou, J. (2012). Effects of bamboo fibers on friction performance of friction materials. Journal of Thermoplastic Composite Materials, 26(6), 845–859.

    Article  Google Scholar 

  • Ma, Y., Wu, S., Zhuang, J., Tong, J., & Qi, H. (2019). Tribological and physio-mechanical characterisation of cow dung fibers reinforced friction composites: an effective utilisation of cow dung waste. Tribology International, 131, 200–211.

    Article  Google Scholar 

  • Maboeta, M. S., & Van Rensburg, L. (2003). Vermicomposting of industrially produced woodchips and sewage sludge utilising Eisenia fetida. Ecotoxicology and Environmental Safety, 56(2), 265–270.

    Article  CAS  Google Scholar 

  • Mandal, K. K., Rajak, A., Debnath, S., & Hasan, M. A. (2013). Integrated nutrient management in Aonla cv A-7 in the red lateritic region of West Bengal. The Journal of Crop and Weed, 9(1), 121–123.

    Google Scholar 

  • Masud, M. H., Ananno, A. A., Arefin, A. M. E., Ahamed, R., Das, P., & Joardder, M. U. H. (2019a). Perspective of biomass energy conversion in Bangladesh. Clean Technologies and Environmental Policy, 21(4), 719–731.

    Article  Google Scholar 

  • Masud, M. H., Ahamed, R., Joardder, M. U. H., & Hasan, M. (2019b). Mathematical model of heat transfer and feasibility test of improved cooking stoves in Bangladesh. International Journal of Ambient Energy, 40(3).

    Google Scholar 

  • Masud, M. H., Akram, W., Ahmed, A., Ananno, A. A., Mourshed, M., Hasan, M., & Joardder, M. U. H. (2019c). Towards the effective E-waste management in Bangladesh: A review. Environmental Science and Pollution Research, 26(2), 1250–1276.

    Google Scholar 

  • Masud, M. H., Islam, T., Joardder, M. U. H., Ananno, A. A., & Dabnichki, P. (2019d). CFD analysis of a tube-in-tube heat exchanger to recover waste heat for food drying. International Journal of Energy and Water Resources, 1–18.

    Google Scholar 

  • Masud M. H., Karim, A., Ananno, A. A., & Ahmed, M. A. (2019e) Sustainable food drying techniques in developing countries: Prospects and challenges, 1st edn. Springer.

    Google Scholar 

  • Masud, M. H., Karim, A., Ananno, A. A., & Ahmed, A. (2020a). Practiced drying technologies in developing countries BT. In Masud, M., Karim, A., Ananno, A. A., & Ahmed, A. A. (eds.) Sustainable food drying techniques in developing countries: Prospects and challenges (pp. 63–80). Cham: Springer International Publishing.

    Google Scholar 

  • Masud, M. H., Karim, A., Ananno, A. A., & Ahmed, A. (2020b). Sustainable drying techniques for developing countries. In Sustainable food drying techniques in developing countries: Prospects and challenges (pp. 81–168). Springer.

    Google Scholar 

  • Masud, M. H., Karim, A., Ananno, A. A., & Ahmed, A. (2020c). Challenges in implementing proposed sustainable food drying techniques BT. In Hasan Masud, M., Karim, A., Ananno, A. A., & Ahmed, A. A. (eds.) Sustainable food drying techniques in developing countries: Prospects and challenges (pp. 169–185). Cham: Springer International Publishing.

    Google Scholar 

  • Masud, M. H., Karim, A., Ananno, A. A., & Ahmed, A. (2020d). Insights of drying BT. In Hasan Masud, M., Karim, A., Ananno, A. A., Ahmed, A. (eds.) Sustainable food drying techniques in developing Countries: Prospects and challenges (pp. 1–20). Cham: Springer International Publishing.

    Google Scholar 

  • Masud, M. H., Nuruzzaman, M., Ahamed, R., Ananno, A. A., & Tomal, A. N. M. A. (2020e). Renewable energy in Bangladesh: current situation and future prospect. International Journal of Sustainable Energy, 39(2), 132–175.

    Google Scholar 

  • Masud, M. H., Ananno, A. A., Ahmed, N., Dabnichki, P., & Salehin, K. N. (2020f). Experimental investigation of a novel waste heat based food drying system. Journal of Food Engineering, 281, 110002.

    Article  CAS  Google Scholar 

  • Mourshed, M., Masud, M. H., Rashid, F., & Joardder, M. U. H. (2017). Towards the effective plastic waste management in Bangladesh: A review. Environmental Science and Pollution Research, 24(35).

    Google Scholar 

  • Mudway, I. S., Duggan, S. T., Venkataraman, C., Habib, G., Kelly, F. J., & Grigg, J. (2005). Combustion of dried animal dung as biofuel results in the generation of highly redox active fine particulates. Part Fibre Toxicology, 2(1), 6.

    Article  Google Scholar 

  • Nabi, A. R., Masud, M. H., & Alam, Q. M. I. (2014). Purification of TPO (Tire Pyrolytic Oil) and its use in diesel engine. IOSR Journal of Engineering, 4(3), 1.

    Google Scholar 

  • Nahar, S., Khan, R. A., Dey, K., Sarker, B., Das, A. K., & Ghoshal, S. (2011). Comparative studies of mechanical and interfacial properties between jute and bamboo fiber-reinforced polypropylene-based composites. Journal of Thermoplastic Composite Materials, 25(1), 15–32.

    Article  Google Scholar 

  • Nahid, N. & Masud, M. H. (2014). Utilisation of waste plastic to save the environment. In International conference on mechanical, industrial and energy engineering (pp. 1–4).

    Google Scholar 

  • Nene, Y. L. (1999). Utilising traditional knowledge in agriculture. Traditional knowledge systems of India and Sri Lanka, 32–38.

    Google Scholar 

  • Oluremi, J., Olaoye, R., Ojoawo, S., & Olalere, A. (2018). Sustainable management of cow dung from slaughter houses. 12, 36–42.

    Google Scholar 

  • Place, F., Barrett, C. B., Freeman, H. A., Ramisch, J. J., & Vanlauwe, B. (2003). Prospects for integrated soil fertility management using organic and inorganic inputs: Evidence from smallholder African agricultural systems. Food Policy, 28(4), 365–378.

    Article  Google Scholar 

  • Qin, J., Qian, S., Chen, Q., Chen, L., Yan, L., & Shen, G. (2019). Cow manure-derived biochar: Its catalytic properties and influential factors. Journal of Hazardous Materials, 371, 381–388.

    Article  CAS  Google Scholar 

  • Raj, A., Jhariya, M. K., & Toppo, P. (2014). Cow dung for eco-friendly and sustainable productive farming. Environmental Science, 3(10), 201–202.

    Google Scholar 

  • Randhawa, G. K., & Kullar, J. S. (2011). Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomeya/cow dung. ISRN Pharmacol.

    Google Scholar 

  • Russell, E. J., & Richards, E. H. (1917). The changes taking place during the storage of farmyard manure. Journal of Agricultural Science, 8(4), 495–563.

    Article  CAS  Google Scholar 

  • Sawant, A. A., et al. (2007). Antimicrobial-resistant enteric bacteria from dairy cattle. Applied and Environment Microbiology, 73(1), 156–163.

    Article  CAS  Google Scholar 

  • Shahbandeh, M. (2020). Global dairy market value 2019 & 2024 Estimated dairy market value worldwide in 2019 and 2024.

    Google Scholar 

  • Singh, R., & Mandal, S. K. (2011). “The utilisation of non-edible oil cake along with cow dung for methane-enriched biogas production using mixed inoculum. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(5), 449–458.

    Article  CAS  Google Scholar 

  • Singh, T., Tiwari, A., Patnaik, A., Chauhan, R., & Ali, S. (2017). Influence of wollastonite shape and amount on tribo-performance of non-asbestos organic brake friction composites. Wear, 386–387, 157–164.

    Article  Google Scholar 

  • Sorathiya, L. M., Fulsoundar, A. B., Tyagi, K. K., Patel, M. D., & Singh, R. R. (2014). Eco-friendly and modern methods of livestock waste recycling for enhancing farm profitability. International Journal of Recycling of Organic Waste Agriculture, 3(1), 50.

    Google Scholar 

  • Statista. (2020). Number of pigs worldwide from 2012 to 2020 (in million head).

    Google Scholar 

  • Suthar, S. (2006). Potential utilisation of guar gum industrial waste in vermicompost production. Bioresource Technology, 97(18), 2474–2477.

    Article  CAS  Google Scholar 

  • Tran, L. Q. N., Fuentes, C. A., Dupont-Gillain, C., Van Vuure, A. W., & Verpoest, I. (2011). Wetting analysis and surface characterisation of coir fibres used as reinforcement for composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1), 251–260.

    Article  CAS  Google Scholar 

  • Wan, D., Wu, L., Liu, Y., Zhao, H., Fu, J., & Xiao, S. (2018). Adsorption of low concentration perchlorate from aqueous solution onto modified cow dung biochar: Effective utilisation of cow dung, an agricultural waste. Science of the Total Environment, 636, 1396–1407.

    Article  CAS  Google Scholar 

  • Williams, T. O., Powell, J. M., & Fernandez-Rivera, S. (1995). Manure availability in relation to sustainable food crop production in Semi-Arid West Africa: Evidence from Niger.

    Google Scholar 

  • Witt, M., Weyer, K., & Manning, D. (2006). Designing a clean-burning, high-efficiency, dung-burning stove: Lessons in cooking with cow patties. Creswell Oregon Aprovech. Res. Cent.

    Google Scholar 

  • Yousif, B. F., Nirmal, U., & Wong, K. J. (2010). Three-body abrasion on wear and frictional performance of treated betelnut fibre reinforced epoxy (T-BFRE) composite. Materials and Design, 31(9), 4514–4521.

    Article  CAS  Google Scholar 

  • Yun, R., Filip, P., & Lu, Y. (2010). Performance and evaluation of eco-friendly brake friction materials. Tribology International, 43(11), 2010–2019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadi Hasan Masud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ananno, A.A., Masud, M.H., Mahjabeen, M., Dabnichki, P. (2021). Multi-utilisation of Cow Dung as Biomass. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_13

Download citation

Publish with us

Policies and ethics