Skip to main content

Simplified Method to Compare the Performance of a Solar Cell Under Different Optical Conditions and Orientations

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2020)

Abstract

The electrification of the modern world will increase the relevance of Renewable Energy Sources (RES). Specifically, Photovoltaic (PV) technologies are expected to be the fastest developing energy generation source. Given the efficiency challenges that these technologies come with, it is necessary to create techniques that allow improving and maximizing their power generation. This paper presents a simple approach to compare the performance of solar cells, using Short-Circuit Current (Isc), Open-Circuit Voltage (Voc) and taking advantage of Internet of Things (IoT) technologies to create a device capable of comparing the performance of multiple cells and plotting real-time results at the same time. Two experiments are carried out to compare different optical covers and different orientations, where according to the device’s measurements, a flat cover performed \(11.5\%\) better than a triangular cover, and western oriented cells performed \(18.7\%\) better that eastern oriented ones. Thus, the device was capable of giving insights for design decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amprobe: SOLAR 600 Solar Analyzer (2010), rev. D

    Google Scholar 

  2. Bayrak, F., Ertürk, G., Oztop, H.F.: Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. J. Clean. Prod. 164, 58–69 (2017)

    Article  Google Scholar 

  3. Betancur, M., Camargo, V., Betancur, J., Velasquez-Lopez, A., Marulanda, J., Toro, V.: Recubrimiento con elementos optoelectrónicos, 11 March 2016. https://sipi.sic.gov.co/, colombia Patent, ref. 16064118

  4. Chauvin Arnoux: FTV200SOLAR PANEL TESTERSI-V Tracer (2012), rev. D

    Google Scholar 

  5. Cuce, E., Cuce, P.M., Bali, T.: An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Appl. Energy 11, 374–382 (2013)

    Article  Google Scholar 

  6. Despotovic, M., Nedic, V.: Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels. Energy Conv. Manage. 97, 121–131 (2015)

    Article  Google Scholar 

  7. DNV G: Maritime forecast to 2050: Energy transition outlook 2017. DNV GL, Høvik, Norway (2017)

    Google Scholar 

  8. Duran, E., Piliougine, M., Sidrach-de Cardona, M., Galan, J., Andujar, J.: Different methods to obtain the I–V curve of PV modules: a review. In: 2008 33rd IEEE Photovoltaic Specialists Conference, pp. 1–6. IEEE (2008)

    Google Scholar 

  9. HT Instruments: I-V500wRel. 1.01–06/03/19I-V curve tracer and IVCK tester up to 15A or 1500VDC (2019), rev. D

    Google Scholar 

  10. Luna, J.G.P., Coria, L.A.M., Iniesta, S.A., Xochimitl, S.J., González, A.E.J.: Modulo trazador de curvas para caracterizar elementos o dispositivos en la gama de nanoamperes. SOMI Congreso de Instrumentación (2014)

    Google Scholar 

  11. Mekhilef, S., Saidur, R., Kamalisarvestani, M.: Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 16(5), 2920–2925 (2012)

    Article  Google Scholar 

  12. Moharram, K.A., Abd-Elhady, M.S., Kandil, H.A., El-Sherif, H.: Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng. J. 4(4), 869–877 (2013)

    Article  Google Scholar 

  13. (NREL) N.R.E.L.: Best research-cell efficiency chart (2019)

    Google Scholar 

  14. (NREL) N.R.E.L.: Champion photovoltaic module efficiency chart (2019)

    Google Scholar 

  15. Qu, H., Li, X.: Temperature dependency of the fill factor in PV modules between 6 and 40 \(^{\circ }\)C. J. Mech. Sci. Technol. 33(4), 1981–1986 (2019). https://doi.org/10.1007/s12206-019-0348-4

  16. Ramaprabha, R., Jubair, S., Suhas, K., Lokesh, A.: Design and implementation of efficient curve tracer for photovoltaic system under partial shaded conditions. Int. J. Electr. Eng. Inf. 7(1), 140 (2015)

    Google Scholar 

  17. Reusch, M., Bivour, M., Hermle, M., Glunz, S.W.: Fill factor limitation of silicon heterojunction solar cells by junction recombination. Energy Procedia 38, 297–304 (2013)

    Article  Google Scholar 

  18. Saidan, M., Albaali, A.G., Alasis, E., Kaldellis, J.K.: Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew. Energy 92, 499–505 (2016)

    Article  Google Scholar 

  19. Seaward Electronic: PV210 Solar PV tester and I-V curve tracer (2018), rev. D

    Google Scholar 

  20. Singh, R.: Why silicon is and will remain the dominant photovoltaic material. J. Nanophotonics 3(1), 032503 (2009)

    Article  Google Scholar 

  21. Solmetric Corporation: Solmetric PVA-1500 Brochure (2018), rev. D

    Google Scholar 

  22. Velasquez-Lopez, A., et al.: Elemento estructural tipo ladrillo que permite la fijación de elementos eléctricos, ópticos, electrónicos y electromecánicos, 10 November 2014. https://sipi.sic.gov.co/, Colombia Patent, ref. 14248214

  23. Wang, D., Cui, H., Su, G.: A modeling method to enhance the conversion efficiency by optimizing light trapping structure in thin-film solar cells. Solar Energy 120, 505–513 (2015)

    Article  Google Scholar 

  24. Zhang, Y., Stokes, N., Jia, B., Fan, S., Gu, M.: Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci. Rep. 4, 4939 (2014)

    Article  Google Scholar 

  25. Zhu, Y., Xiao, W.: A comprehensive review of topologies for photovoltaic I–V curve tracer. Solar Energy 196, 346–357 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Universidad EAFIT and the alliance “ENERGETICA 2030”, which is a Research Program, with code 58667 from the “Colombia Científica” initiative, funded by The World Bank through the call “778-2017 Scientific Ecosystems”. The research program is managed by the Colombian Ministry of Science, Technology and Innovation (Minciencias) with contract No. FP44842-210-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Giraldo-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giraldo-Pérez, J.P., Orrego-García, J.S., Ospina-Metaute, C.C., Velásquez-López, A. (2020). Simplified Method to Compare the Performance of a Solar Cell Under Different Optical Conditions and Orientations. In: Figueroa-García, J.C., Garay-Rairán, F.S., Hernández-Pérez, G.J., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2020. Communications in Computer and Information Science, vol 1274. Springer, Cham. https://doi.org/10.1007/978-3-030-61834-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61834-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61833-9

  • Online ISBN: 978-3-030-61834-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics