Skip to main content

Physical Parametrisation of Fire-Spotting for Operational Wildfire Simulators

  • Conference paper
  • First Online:
Applied Mathematics for Environmental Problems

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 6))

Abstract

Fire-spotting is strongly affected by mean wind and fire intensity, not only because they characterise the transport of firebrands, but, also, because they change the geometry of the flame, namely, the flame height and the flame length. Interdependencies between the flame length and the fire intensity are discussed in literature by a number of empirical relations. In the present study, the energy conservation principle and the energy flow rate in the convection column above the fire line are considered in order to establish the relation between the flame geometry and the fire line intensity in wildfires. Moreover, in opposition to literature, the derived formula allows for stating the rate of spread of the fire propagation in terms of the flame geometry factors by taking into account also the effects of the horizontal mean wind and the terrain slope. Numerical examples show that fire-spotting is strongly impacted by the flame geometry, which is specified by the fuel and vegetation, and then it cannot be neglected in the physical parametrisation of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albini, F.A.: A model for the wind-blown flame from a line fire. Combust. Flame 43, 155–174 (1981)

    Article  Google Scholar 

  2. Alexander, M.E.: Calculating and interpreting forest fire intensities. Can. J. Bot. 60, 349–357 (1982)

    Article  Google Scholar 

  3. Alexander, M.E., Cruz, M.G.: Interdependencies between flame length and firefire intensity in predicting crown fire initiation and crown scorch height. Int. J. Wildland Fire 21, 95–113 (2012)

    Article  Google Scholar 

  4. Anderson, H.E., Brackebusch, A.P., Mutch, R.W., Rothermel, R.C.: Mechanisms of fire spread research, Progress Report No. 2. Research Paper INT-RP-28, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden (1966)

    Google Scholar 

  5. Andrews, P.L.: The Rothermel surface fire spread model and associated developments: a comprehensive explanation. General Technical Reports RMRS-GTR-371. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins (2018)

    Google Scholar 

  6. Butler, B.W., Finney, M.A., Andrews, P.L., Albini, F.A.: A radiation-driven model of crown fire spread. Can. J. For. Res. 34, 1588–1599 (2004)

    Article  Google Scholar 

  7. Byram, G.M.: Combustion of forest fuels. In: Davis, K.P. (ed.) Forest Fire: Control and Use, pp. 61–89. McGraw Hill, New York (1959)

    Google Scholar 

  8. Byram, G.M.: Forest fire behavior. In: Davis, K.P. (ed.) Forest Fire: Control and Use, pp. 90–123. McGraw Hill, New York (1959)

    Google Scholar 

  9. Campbell, M.J., Dennison, P.E., Butler, B.W.: Safe separation distance score: a new metric for evaluating wildland firefighter safety zones using lidar. Int. J. Geogr. Inf. Sci. 31(7), 1448–1466 (2016)

    Article  Google Scholar 

  10. Chu, K.T., Prodanović, M.: Level set method library (LSMLIB). http://ktchu.serendipityresearch.org/software/lsmlib/ (2009)

  11. Clark, R.G.: Threshold requirements for fire spread in grassland fuels. Ph.D. thesis, Texas Tech University, Lubbock (1983)

    Google Scholar 

  12. Egorova, V.N., Trucchia, A., Pagnini, G.: Fire-spotting generated fires. Part I: the role of atmospheric stability. Appl. Math. Model. 84, 590–609 (2020). https://doi.org/10.1016/j.apm.2019.02.010

    MATH  Google Scholar 

  13. Fernandez-Pello, A.C.: Wildland fire spot ignition by sparks and firebrands. Fire Safety J. 91, 2–10 (2017)

    Article  Google Scholar 

  14. Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A wildland fire physical model well suited to data assimilation. Pure Appl. Geophys. 172, 121–139 (2015)

    Article  Google Scholar 

  15. Fons, W.L., Clements, H.B., George, P.M.: Scale effects on propagation rate of laboratory crib fires. Symp. Int. Combust. Proc. 9, 860–866 (1963)

    Article  Google Scholar 

  16. Kaur, I., Pagnini, G.: Fire-spotting modelling and parametrisation for wild-land fires. In: Sauvage, S., Sánchez-Pérez, J.M., Rizzoli, A.E. (eds.) Proceedings of the 8th International Congress on Environmental Modelling and Software (iEMSs2016); Toulouse, 10–14 July (2016), pp. 384–391 (2016). ISBN: 978-88-9035-745-9

    Google Scholar 

  17. Kaur, I., Mentrelli, A., Bosseur, F., Filippi, J.-B., Pagnini, G. Turbulence and fire-spotting effects into wild-land fire simulators. Commun. Nonlinear Sci. Numer. Simul. 39, 300–320 (2016)

    Article  MathSciNet  Google Scholar 

  18. Marcelli, T., Balbi, J.H., Moretti, B., Rossi, J.L., Chatelon, F.J.: Flame height model of a spreading surface fire. In: Proceedings of the 7th Mediterranean Combustion Symposium MCS7, Cagliari, 11–15 Sept (2011). ISBN: 978-88-88104-12-6

    Google Scholar 

  19. Martin, J., Hillen, T.: The spotting distribution of wildfires. Appl. Sci. 6(6), 177–210 (2016)

    Article  Google Scholar 

  20. Nelson, R.M. Jr.: Byram’s energy criterion for wildland fires: units and equations. Research Note INT-415, Intermountain Research Station, Forest Service (1993)

    Google Scholar 

  21. Nelson, R.M. Jr., Butler, B.W., Weise, D.R.: Entrainment regimes and flame characteristics of wildland fires. Int. J. Wildland Fire 21, 127–140 (2012)

    Article  Google Scholar 

  22. Nmira, F., Consalvi, J.L., Boulet, P., Porterie, B.: Numerical study of wind effects on the characteristics of flames from non-propagating vegetation fires. Fire Safety J. 45(2), 129–141 (2010)

    Article  Google Scholar 

  23. NWCG: S-290 intermediate wildland fire behavior course. Unit 12: gauging fire behavior and guiding fireline decisions

    Google Scholar 

  24. Pagnini, G., Mentrelli, A.: Modelling wildland fire propagation by tracking random fronts. Nat. Hazards Earth Syst. Sci. 14, 2249–2263 (2014)

    Article  Google Scholar 

  25. Rossi, J.L., Chetehouna, K., Collin, A., Moretti, B., Balbi, J.H.: Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire. Combust. Sci. Technol. 182, 1457–1477 (2010)

    Article  Google Scholar 

  26. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. Research Paper INT-115, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden (1972). Available at: http://www.treesearch.fs.fed.us/pubs/32533

  27. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  Google Scholar 

  28. Sofiev, M., Ermakova, T., Vankevich, R.: Evaluation of the smoke-injection height from wild-land fires using remote-sensing data. Atmos. Chem. Phys. 12(4), 1995–2006 (2012)

    Article  Google Scholar 

  29. Sullivan, A.L.: Convective Froude number and Byram’s energy criterion of Australian experimental grassland fires. Proc. Combust. Inst. 31, 2557–2564 (2007)

    Article  Google Scholar 

  30. Sullivan, A.L.: Inside the inferno: fundamental processes of wildland fire behaviour. Part 1: combustion chemistry and heat release. Curr. Forest. Rep. 3, 132–149 (2017)

    Google Scholar 

  31. Sullivan, A.L.: Inside the inferno: fundamental processes of wildland fire behaviour. Part 2: heat transfer and interaction. Curr. Forest. Rep. 3, 150–171 (2017)

    Google Scholar 

  32. Thomas, P.: The size of flames from natural fires. Symp. Int. Combust. Proc. 9, 844–859 (1963)

    Article  Google Scholar 

  33. Trucchia, A., Egorova, V., Butenko, A., Kaur, I., Pagnini, G.: RandomFront 2.3: a physical parametrisation of fire-spotting for operational fire spread models – implementation in WRF-SFIRE and response analysis with LSFire+. Geosci. Model Dev. 12, 69–87 (2019)

    Google Scholar 

  34. Vaillant, N.M., Ager, A.A., Anderson, J., Miller, L.: ArcFuels user guide and tutorial: for use with ArcGIS 9. General Technical Report PNW-GTR-877, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station (2013)

    Google Scholar 

  35. van Wilgen, B.W.: A simple relationship for estimating the intensity of fires in natural vegetation. S. Afr. J. Bot. 52, 384–385 (1986)

    Article  Google Scholar 

  36. Viegas, D.X. (ed.): Forest Fire Research & Wildland Fire Safety. Millpress, Rotterdam (2002)

    Google Scholar 

  37. Wang, H.-H.: Analysis on downwind distribution of firebrands sourced from a wildland fire. Fire Technol. 47(2), 321–340 (2011)

    Article  Google Scholar 

  38. Weise, D.R., Fletcher, T.H., Zhou, S.M.X., Sun, L.: Fire spread in chaparral: comparison of data with flame-mass loss relationships. In: Proceedings of the 8th International Symposium on Scale Modeling (ISSM-8), 12–14 Sept 2017, Portland (2017)

    Google Scholar 

  39. Weise, D.R., Fletcher, T.H., Cole, W., Mahalingam, S., Zhou, X., Sun, L., Li, J.: Fire behavior in chaparral – evaluating flame models with laboratory data. Combust. Flame 191, 500–512 (2018)

    Article  Google Scholar 

  40. Wilson, A.A.G., Ferguson, I.S.: Predicting the probability of house survival during bushfires. J. Environ. Manage. 23, 259–270 (1986)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Basque Government through the BERC 2014-2017 and the BERC 2018-2021 programs and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditations SEV-2013-0323 and SEV-2017-0718 and through project MTM2016-76016-R ‘MIP’ and by the PhD grant ‘La Caixa 2014’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Pagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egorova, V.N., Trucchia, A., Pagnini, G. (2021). Physical Parametrisation of Fire-Spotting for Operational Wildfire Simulators. In: Asensio, M.I., Oliver, A., Sarrate, J. (eds) Applied Mathematics for Environmental Problems. SEMA SIMAI Springer Series(), vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-61795-0_2

Download citation

Publish with us

Policies and ethics