Skip to main content

PhyFire: An Online GIS-Integrated Wildfire Spread Simulation Tool Based on a Semiphysical Model

  • Conference paper
  • First Online:
Applied Mathematics for Environmental Problems

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 6))

Abstract

The PhyFire simplified physical wildfire spread model developed by the research group on Numerical Simulation and Scientific Computation at the University of Salamanca has been integrated into an online GIS interface in order to facilitate its use, automate the data input process, thereby reducing error and improving efficiency, and upgrade the graphical display of simulation results. The main features of the PhyFire model are presented: model equations, numerical solution and GIS integration. A description is provided of new advances in the PhyFire model related to the addition of random phenomena, such as fire-spotting. A real wildfire simulation with fire-spotting is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Álvarez, D., Prieto, D., Asensio, M.I., Cascón, J.M., Ferragut, L.: Parallel implementation of a simplified semi-physical wildland fire spread model using openMP. In: Martínez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds.) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science, vol. 10334. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_22

  2. Aponte, C., de Groot, W., Wotton, B.: Forest fires and climate change: causes, consequences and management option. Int. J. Wildland Fire 25(8), I–II (2016). https://doi.org/10.1071/WFv25n8_FO

  3. Arellano, S., Vega, J., Ruíz, A., Arellano, A., Álvarez, J., Vega, D., Pérez, E.: Foto-guía de combustibles forestales de Galicia. Versión I, Andavira Editora, S.L. (2016). https://doi.org/10.14195/978-989-26-16-506

  4. Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Methods Eng. 54(1), 137–157 (2002). https://doi.org/10.1002/nme.420

    Article  MathSciNet  Google Scholar 

  5. Asensio, M.I., Ferragut, L., Simon, J.: A convection model for fire spread simulation. Appl. Math. Lett. 18, 673–677 (2005). https://doi.org/10.1016/j.aml.2004.04.011

    Article  MathSciNet  Google Scholar 

  6. Asensio, M.I., Santos-Martín, M.T., Álvarez-León, D., Ferragut, L.: Global sensitivity analysis of fuel-type-dependent input variables of a simplified physical fire spread model. Math. Comput. Simul. 172, 33–44 (2020). https://doi.org/10.1016/j.matcom.2020.01.001

    Article  MathSciNet  Google Scholar 

  7. Cascón, J.M., Ferragut, L., Asensio, M.I., Prieto, D., Álvarez, D.: Neptuno ++: an adaptive finite element toolbox for numerical simulation of environmental problems. In: XVIII Spanish-French School Jacques- Louis Lions about Numerical Simulation in Physics and Engineering, Las Palmas de Gran Canaria (2018). http://hdl.handle.net/10366/138180

  8. Ferragut, L., Asensio, M.I., Montenegro, R., Plaza, A., Winter, G., Serón, F.J.: A model for fire simulation in landscapes. In: Désidéri y otros, J. A. (eds.) Third ECCOMAS Computational Fluid Dynamics Conference, París (Francia), Sept 1996, pp. 111–116. John Wiley & Sons

    Google Scholar 

  9. Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture content in fire spread. Commun. Numer. Methods Eng. 23(9), 819–833 (2007). https://doi.org/10.1002/cnm.927

    Article  MathSciNet  Google Scholar 

  10. Ferragut, L., Asensio, M.I., Monedero, S.: A numerical method for solving convection-reaction-diffusion multivalued equations in fire spread modelling. Adv. Eng. Softw. 38(6), 366–371 (2007). https://doi.org/10.1016/j.advengsoft.2006.09.007

    Article  Google Scholar 

  11. Ferragut, L., Montenegro, R., Montero, G., Rodríguez, E., Asensio, M.I., Escobar, J.: Comparison between 2.5-D and 3-D realistic models for wind field adjustment. J. Wind Eng. Indus. Aerodyn. 98, 548–558 (2010). https://doi.org/10.1016/j.jweia.2010.04.004

  12. Ferragut, L., Asensio, M.I., Simon, J.: High definition local adjustment model of 3D wind fields performing only 2D computations. Int. J. Numer. Methods Biomed. Eng. 27, 510–523 (2011). https://doi.org/10.1002/cnm.1314

    Article  MathSciNet  Google Scholar 

  13. Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A simplified wildland fire model applied to a real case. In: Advances in Differential Equations and Applications. SEMA SIMAI Springer Series, vol 4, pp. 155–167. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-06953-1_16

  14. Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A wildland fire physical model well suited to data assimilation. Pure Appl. Geophys. 172(1), 121–139 (2015). https://doi.org/10.1007/s00024-014-0893-9

    Article  Google Scholar 

  15. Finney, M.: FARSITE: fire area simulator-model development and evaluation. Research Paper RMRS-RP-4 (revised), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden (2004)

    Google Scholar 

  16. Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J., Bowman, D.M.J.S.: Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6(7537) (2015). https://doi.org/10.1038/ncomms8537

  17. Kaur I., Mentrelli A., Bosseur F., Filippi J.B., Pagnini G.: Turbulence and fire-spotting effects into wildland fire simulators. Commun. Nonlinear Sci. Numer. Simul. 39, 300–320 (2016). https://doi.org/10.1016/j.cnsns.2016.03.003

    Article  MathSciNet  Google Scholar 

  18. Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Develop. 4(3), 591–610 (2011). https://doi.org/10.5194/gmd-4-591-2011

  19. Martin, J., Hillen, T.: The spotting distribution of wildfires. Appl. Sci. 6, 177–210 (2016). https://doi.org/10.3390/app6060177

    Article  Google Scholar 

  20. Morillo, A., Análisis del comportamiento del fuego forestal observado y simulado: estudio del caso del incendio forestal de Osoño (Vilardevós)-Verín-Ourense. Master of Advanced Studies dissertation, Higher Polytechnical College of Lugo, University of Santiago de Compostela (2011) (in Spanish)

    Google Scholar 

  21. Pagnini, G., Mentrelli, A.: Modelling wildland fire propagation by tracking random fronts. Nat. Hazards Earth Syst. Sci. 14, 2249–2263 (2014). https://doi.org/10.5194/nhess-14-2249-2014

    Article  Google Scholar 

  22. Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M.: Sensitivity analysis and parameter adjustment in a simplified physical wildland fire model. Adv. Eng. Softw. 90, 98–106 (2015). https://doi.org/10.1016/j.advengsoft.2015.08.001

    Article  Google Scholar 

  23. Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M., Morillo, A.: A GIS based fire spread simulator integrating a simplified physical wildland fire model and a wind field model. Int. J. Geograph. Inf. Sci. 31(11), 2142–2163 (2017). https://doi.org/10.1080/13658816.2017.1334889

    Article  Google Scholar 

  24. Sardoy, N., Consalvi, J.L., Kaiss, A., Fernandez-Pello, A.C., Porterie, B.: Numerical study of ground-level distribution of firebrands generated by line fire. Combust. Flame 154, 478–488 (2008). https://doi.org/10.1016/j.combustflame.2008.05.006

    Article  Google Scholar 

  25. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. McGraw-Hill Inc., New York (1972)

    Google Scholar 

  26. Trucchia, A., Egorova, V., Butenko, A., Kaur, I., Pagnini, G.: RandomFront 2.3 a physical parametrization of fire-spotting for operational fire spread models: implementation in WRF-Sfire and response analysis with LSFire+. Geosci. Model Develop. 12(1), 69–87 (2019). https://doi.org/10.5194/gmd-12-69-2019

  27. Tymstra, C., Bryce, R., Wotton, B., Taylor, S., Armitage, O.: Development and structure of Prometheus: the Canadian wildland fire growth simulation model, Information Report NOR-X-417, Canadian Forest Service, Northern Forestry Centre (2010). https://d1ied5g1xfgpx8.cloudfront.net/pdfs/31775.pdf

  28. Vasconcelos, M., Guertin, D.: Firemap – simulation of fire growth with a geographic information system. Int. J. Wildland Fire 2(2), 87–96 (1992). https://doi.org/10.1071/WF9920087

    Article  Google Scholar 

  29. Wang, H.H.: Analysis on downwind distribution of firebrands sourced from a wildland fire. Fire Technol. 47, 321–340 (2011). https://doi.org/10.1007/s10694-009-0134-4

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Conserjería de Educación (Department of Education) of the regional government, the Junta de Castilla y León (SA020U16), by the University of Salamanca General Foundation (TCUE Grant and Prototransfer) both with the participation of ERDF, and by Fundación Universidades y Enseñanzas Superiores de Castilla y León through the University Nursery Business Promoters’ first award in 2018.

G. Pagnini is supported by the Basque Government through the BERC 2018–2021 program and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project MTM16-76016-R MIP.

We thank the ICIAM2019 organization for the opportunity to disclose the modelling of environmental issues and highlight the role of Applied Mathematics in improving the environment through the mini-symposium specifically dedicated to environmental problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Asensio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asensio, M.I. et al. (2021). PhyFire: An Online GIS-Integrated Wildfire Spread Simulation Tool Based on a Semiphysical Model. In: Asensio, M.I., Oliver, A., Sarrate, J. (eds) Applied Mathematics for Environmental Problems. SEMA SIMAI Springer Series(), vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-61795-0_1

Download citation

Publish with us

Policies and ethics