Skip to main content

Magnetohydrodynamics Adaptive Solvers in the AMROC Framework for Space Plasma Applications

  • Conference paper
  • First Online:
Cartesian CFD Methods for Complex Applications

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 3))

Abstract

Plasma disturbances affect satellites and spacecraft and can cause serious problems to telecommunications and sensitive sensor systems on Earth. Considering the huge scale of the plasma phenomena, data collection at individual locations is not sufficient to cover this entire relevant environment. Therefore, computational plasma modelling has become a significant issue for space sciences, particularly for the near-Earth magnetosphere. However, the simulations of these disturbances present many physical as well as numerical and computational challenges. In this work, we discuss our recent magnetohydrodynamic solver, realised within the MPI-parallel AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework, in which particular physical models and automatic mesh generation procedures have been implemented. A performance analysis using a selection of significant space applications validates the solvers capabilities and confirms the technical importance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    OMNI web service, NASA: https://omniweb.gsfc.nasa.gov/.

  2. 2.

    AMROC webpage: http://www.vtf.website/asc/wiki/bin/view/Amroc.

  3. 3.

    World Data Center for Geomagnetism: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html.

  4. 4.

    AMROC webpage: http://www.vtf.website/asc/wiki/bin/view/Amroc.

  5. 5.

    Visit webpage: https://wci.llnl.gov/simulation/computer-codes/visit/downloads.

  6. 6.

    Paraview webpage: https://www.paraview.org/download/.

  7. 7.

    World Data Center for Geomagnetism: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html.

  8. 8.

    OMNI web service, NASA: https://omniweb.gsfc.nasa.gov/form/omni_min.html.

References

  1. Ahrens, J., Geveci, B., Law, C.: ParaView. Los Alamos National Laboratory, Los Alamos (2005)

    Google Scholar 

  2. Bell, J., Berger, M.J., Saltzmann, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)

    Article  MathSciNet  Google Scholar 

  3. Berger, M.J.: Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Stanford University, Stanford (1982)

    Google Scholar 

  4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  Google Scholar 

  5. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MathSciNet  Google Scholar 

  6. Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edn. Springer, New York (2004)

    Book  Google Scholar 

  7. Brackbill, J.U., Barnes, D.C.: The effect of nonzero ∇⋅ B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)

    Article  MathSciNet  Google Scholar 

  8. Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Nature 126(3169), 129–130 (1930)

    Article  Google Scholar 

  9. Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 171–186 (1931)

    Article  Google Scholar 

  10. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: VisIt: an end-user tool for visualizing and analyzing very large data. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High Performance Visualization–Enabling Extreme-Scale Scientific Insight, 1st edn., Chapter 16, pp. 357–372. Chapman and Hall/CRC, New York (2012)

    Google Scholar 

  11. Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.), Handbook of Numerical Analysis, vol. VII. Elsevier, Amsterdam (2000)

    Google Scholar 

  12. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)

    Article  MathSciNet  Google Scholar 

  13. Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures. Ph.D. Thesis, Brandenburgische Technische Universität Cottbus (2003)

    Google Scholar 

  14. Deiterding, R.: Construction and application of an AMR algorithm for distributed memory computers. In: Plewa, T., Linde, T., Weirs, V.G. (eds.), Adaptive Mesh Refinement – Theory and Applications, pp. 361–372. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. Deiterding, R.: Block-structured adaptive mesh refinement – theory, implementation and application. ESAIM: Proc. 34, 97–150 (2011)

    Article  MathSciNet  Google Scholar 

  16. Deiterding, R., Domingues, M.O.: Evaluation of multiresolution mesh adaptation criteria in the AMROC framework. In: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, vol. 111. Civil Comp Press (2017)

    Google Scholar 

  17. Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution or adaptive mesh refinement: a case study for 2D Euler equations. ESAIM Proc. 29, 28–42 (2009)

    Article  MathSciNet  Google Scholar 

  18. Deiterding, R., Domingues, M.O., Schneider, K.: Multiresolution analysis as a criterion for effective dynamic mesh adaptation – a case study for Euler equations in the SAMR framework AMROC. Comput. Fluids 205, 104583 (2020)

    Article  MathSciNet  Google Scholar 

  19. Domingues, M.O., Deiterding, R., Moreira Lopes, M., Gomes, A.K.F., Mendes, O., Schneider, K.: Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the AMROC framework. Comput. Fluids 190, 374–381 (2019)

    Article  MathSciNet  Google Scholar 

  20. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution methods. ESAIM Proc. 34, 1–96 (2011)

    Article  MathSciNet  Google Scholar 

  21. Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.A., Gibbs, M., Burnett, C.: The economic impact of space weather: where do we stand? Risk Anal. 37(2) (2017)

    Google Scholar 

  22. Feng, X.: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Springer, Singapore (2020)

    Book  Google Scholar 

  23. Fromang, S., Hennebelle, P., Teyssier, R.: A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical MHD. Astron. Astrophys. 457(2), 371–384 (2006)

    Article  Google Scholar 

  24. Gheller, C.: ENZO and RAMSES codes for computational astrophysics. Technical Report, Swiss National Supercomputing Centre (2017). Available online in https://hpc-forge.cineca.it/files/CoursesDev/public/2017/HPC_methods_for_Computational_Fluid_Dynamics_and_Astrophysics/Bologna/ASTR02-ENZO_and_RAMSES_Codes-Gheller.pdf

  25. Goedbloed, P., Keppens, R.: Lecture notes in magnetohydrodynamics of astrophysical plasmas. Chapter 4: The MHD model. Technical report, Utrecht University, Sep-2004/Jan-2005. Available online in https://perswww.kuleuven.be/~u0016541/MHD_sheets_pdf/nsap430m.06.4.pdf

  26. Hargreaves, J.K.: The Solar-Terrestrial Environment. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  27. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)

    Article  MathSciNet  Google Scholar 

  28. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  Google Scholar 

  29. Hopkins, P.F.: A constrained-gradient method to control divergence errors in numerical MHD. Mon. Not. R. Astron. Soc. 462, 576–587 (2016)

    Article  Google Scholar 

  30. Jiang, R.-L., Fang, C., Chen, P.-F.: A new MHD code with adaptive mesh refinement and parallelization for astrophysics. Comput. Phys. Commun. 183(8), 1617–1633 (2012)

    Article  Google Scholar 

  31. Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil, C.B., Koren, B. (eds.), Numerical Methods for Advection-Diffusion Problems. Notes on Numerical Fluid Mechanics, pp. 117–138. Vieweg, Germany (1993)

    Google Scholar 

  32. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, vol. 8. Course of Theoretical Physics S, Pergamon, 2nd edn. (2004)

    Google Scholar 

  33. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel (1990)

    Book  Google Scholar 

  34. Mignone, A., Tzeferacos, P., Bodo, G.: High-order conservative finite difference GLM–MHD schemes for cell-centered MHD. J. Comput. Phys. 229(17), 5896–5920 (2010)

    Article  MathSciNet  Google Scholar 

  35. Miyoshi, T., Kusano, K.A.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208, 315–344 (2005)

    Article  MathSciNet  Google Scholar 

  36. Moreira Lopes, M., Deiterding, R., Gomes, A.K.F., Mendes, O., Domingues, M.: An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement. Comput. Fluids 173, 293–298 (2018)

    Article  MathSciNet  Google Scholar 

  37. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, vol. 27. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2003)

    Google Scholar 

  38. Ogino, T.: A Three-Dimensional MHD simulation of the interaction of the Solar Wind with the Earth’s Magnetosphere: the generation of field-aligned currents. J. Geophys. Res. 91(A6), 6791–6806 (1986)

    Article  Google Scholar 

  39. Ogino, T.: Two-dimensional MHD code. In: Omura, Y., Matsumoto, H. (ed.), Computer Space Plasma Physics: Simulations and Software, pp. 161–191. Terra Scientific Publishing, Tokyo (1993)

    Google Scholar 

  40. Ogino, T., Walker, R.J., Ashour-Abdalla, M.: A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Trans. Plasma Sci. 20(6), 817–828 (1992)

    Article  Google Scholar 

  41. Roe, P.L.: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18(1), 337–365 (1986)

    Article  MathSciNet  Google Scholar 

  42. Russell, C.T., Luhmann, J.G., Strangeway, R.J.: Space Physics: An Introduction. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  43. Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.V., Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T., Nandy, D., Obara, T., O’Brien, T.P., Onsager, T., Opgenoorth, H.J., Terkildsen, M., Valladares, C.E., Vilmer, N.: Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55(12), 2745–2807 (2015)

    Google Scholar 

  44. Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137–177 (2008)

    Article  Google Scholar 

  45. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)

    Book  Google Scholar 

  46. Tóth, G.: The ∇⋅ B constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  Google Scholar 

  47. Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., Stout, Q.F., Glocer, A., Ma, Y.-J., Opher, M.: Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870–903 (2012)

    Article  MathSciNet  Google Scholar 

  48. van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    MATH  Google Scholar 

  49. van Leer, B.: Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23(3), 263–275 (1977)

    MATH  Google Scholar 

  50. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    MATH  Google Scholar 

  51. van Albada, G.D., van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. In: Hussaini, M.Y., van Leer, B., van Rosendale, J. (eds.), Upwind and High-Resolution Schemes, pp. 95–103. Springer, Berlin (1997)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the FAPESP (grants: 2018/03039-9, 2015/ 25624-2), CNPq (grants: 424352/2018-4, 302226/2018-4, 307083/2017-9, 306038/2015-3) and FINEP (grant: 0112052700) for financial support of this research. MML thanks CNPq (grant: 140626/2014-0) for his doctorate and CAPES (grant: 88882.463276/2019-01) for his post-doctorate scholarship. We are indebted to Eng. V. E. Menconi for his invaluable computational assistance, to M. Sierra-Lorenzo and A. K. F. Gomes for the fruitful discussions, and to Prof. Ogino for the MHD code and scientific discussions that inspired our magnetosphere implementation. We also thank the teams of World Data Center for Geomagnetism, Kyoto, for the geomagnetic indices dataset, and the OMNI web service, NASA, for access to the interplanetary dataset.

We also thank the anonymous reviewers for their comments and suggestions that have improved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müller Moreira Lopes .

Editor information

Editors and Affiliations

Appendix

Appendix

Code Organisation

In the context of this work, the AMROC framework, as described in [15] and published onlineFootnote 4 is divided into two main folders: the implementation and compilation folders. The folder vtf/amroc/amr contains the base algorithm for a numerical simulation using SAMR methods for a generic system of hyperbolic equations. The files contained in this folder specify the data structures and routines outside the scope of the simulated equations, such as mesh adaptation, mesh distribution per processor, boundary conditions, restriction and prolongation operators, etc. In particular, the function IntegrateLevel() in the file AMRSolver.h calls the numerical scheme associated with the simulated equation, implemented in the base module, using the mpass counter. For each iteration of this counter, the scheme defined in the base is computed and then the ghost cells are updated. Considering the implemented MHD solver, this counter performs three iterations, corresponding to the first Runge–Kutta (RK) step, the second RK step and the divergence cleaning step, respectively. The GLM implementation files are located in the mhd directory of the implementation folder. They contain the base virtual functions to perform a generic simulation of the MHD equations for two and three dimensions.

In special, these files contain the time evolution function Step(), called from the Generic SAMR solver, and the virtual functions called from this function. The use of virtual functions allows the definition of base functions that may be used for most of the experiments, while allowing the redefinition of these functions in the specific MHD module, if required by the studied problem. In general, the functions from the base module implement numerical operations that are independent from the problem simulated, such as flux computations, limiters and divergence cleaning routines. The problem-specific file located in the respective source directory src implements functions that are particular to each experiment. In general, this file contains initial conditions and resistivity and gravity fields. However, if necessary for the experiment, this file may contain redefinitions of virtual functions implemented in the base module. We also have for each simulation an input parameter namelist called solver.in.

Finally, the MHD module in AMROC runs scripts that already contain the commands to convert the output HDF (Hierarchical Data Format) files into binary VTK (Visualization ToolKit) files used for data visualisation in tools such as VisItFootnote 5[10] and ParaViewFootnote 6[1].

Geomagnetic Disturbances

To attend the interests of the geophysical community, devices to measure the geomagnetic field, designated in a general sense as magnetometers, have been installed on the ground, nowadays composing a large net spread around the world. One can find more information and specific documentation in the World Data Center for Geomagnetism, Kyoto.Footnote 7 Also, related fundamentals on space physics are available in [42]. To quantify the level of geomagnetic disturbance occurring upon the Earth, the interested reader can survey and examine some geomagnetic disturbance indices, for instance, the index Kp for an estimated planetary disturbance behaviour, the index AE for auroral electrojet disturbance effects and the index Dst for a low latitude magnetic disturbance. In our case, we choose and present in Fig. A.1 the interplanetary magnetic field Bz, the index AE and the index Sym-H. This information can be collected effortlessly from the OMNI web service, NASA.Footnote 8Bz is the primary variable responsible for triggering of the magnetic reconnection process (merging of the interplanetary magnetic field lines with the geomagnetic field lines), when this IMF component is a predominantly southward-oriented field (i.e. in opposition to the geomagnetic field orientation), in the frontal side, i.e. towards to the Sun, of the Earth’s magnetosphere. AE is the geomagnetic index concerning the modification of the auroral electrojet currents that produce magnetic disturbances in the higher latitudes. Sym-H is the index concerning the intensification of an equatorial, symmetrical ring electrical current (at a distance about 6–7 Earth radii) that produces magnetic disturbances in the lower latitudes. Recorded by geomagnetic indices, any geomagnetic variations link intrinsically to the electrodynamical coupling between the solar plasma and the Earth’s magnetosphere.

Fig. A.1
figure 8

MAG: Geomagnetic disturbances shown by the geomagnetic indices: Auroral Electroject (AE) and Symmetric Equatorial ring current effect (Sym-H) corresponding to the period between January 16th and 18th of 2018. Indicated in the interplanetary magnetic field Bz. Letter A indicates northward-oriented field interval, B a transition value and C southward-oriented interval

From the figure, indicated in the interplanetary magnetic field Bz, the letter A identifies a corresponding maximum-value time in the northward-oriented field interval, B a time under a transition value (close to zero) and C a corresponding minimum-value time in the southward-oriented interval. There are two reasons to select this dataset region: to pick up distinct interplanetary behaviours and to be far from the simulation beginning. This procedure allows for exemplifying evolution consistency related to record inputs and tangible results. As shown in the plot, a time-coincident small intensity effect was noted in the auroral index, AE, and no effect stands out in the equatorial index, Sym-H. Shown in Fig. 7, the simulation results for the Earth’s magnetic field configuration are in physical agreement with the magnetic effects on the ground, as the physics presented and discussed, for instance, by Russell et al. [42]. The current code features provide the means for evolution analysis of the Earth’s magnetosphere in complicated scenarios, such as investigations for geomagnetically quiet conditions.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopes, M.M., Domingues, M.O., Deiterding, R., Mendes, O. (2021). Magnetohydrodynamics Adaptive Solvers in the AMROC Framework for Space Plasma Applications. In: Deiterding, R., Domingues, M.O., Schneider, K. (eds) Cartesian CFD Methods for Complex Applications. SEMA SIMAI Springer Series(), vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-61761-5_5

Download citation

Publish with us

Policies and ethics