Advertisement

The Collatz Process Embeds a Base Conversion Algorithm

Conference paper
  • 94 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12448)

Abstract

The Collatz process is defined on natural numbers by iterating the map \(T(x) = T_0(x) = x/2\) when \(x\in \mathbb {N}\) is even and \(T(x)=T_1(x) =(3x+1)/2\) when x is odd. In an effort to understand its dynamics, and since Generalised Collatz Maps are known to simulate Turing Machines [Conway, 1972], it seems natural to ask what kinds of algorithmic behaviours it embeds. We define a quasi-cellular automaton that exactly simulates the Collatz process on the square grid: on input \(x\in \mathbb {N}\), written horizontally in base 2, successive rows give the Collatz sequence of x in base 2. We show that vertical columns simultaneously iterate the map in base 3. This leads to our main result: the Collatz process embeds an algorithm that converts any natural number from base 3 to base 2. We also find that the evolution of our automaton computes the parity of the number of 1s in any ternary input. It follows that predicting about half of the bits of the iterates \(T^i(x)\), for \(i = O(\log x)\), is in the complexity class NC\(^1\) but outside AC\(^0\). These results show that the Collatz process is capable of some simple, but non-trivial, computation in bases 2 and 3, suggesting an algorithmic approach to thinking about prediction and existence of cycles in the Collatz process.

Keywords

Collatz map Model of computation Reachability problem 

Notes

Acknowledgement

Sincere thanks to Olivier Rozier for fruitful interactions, and to the anonymous reviewers for helpful comments.

References

  1. 1.
    Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers I. Expansions in integer bases. Ann. Math. 165(2), 547–565 (2007).  https://doi.org/10.4007/annals.2007.165.547
  2. 2.
    Adamczewski, B., Faverjon, C.: Mahler’s method in several variables II: Applications to base change problems and finite automata, September 2018. https://arxiv.org/abs/1809.04826
  3. 3.
    Bruschi, M.: Two cellular automata for the 3x+1 map (2005). https://arxiv.org/abs/nlin/0502061
  4. 4.
    Capco, J.: Odd Collatz sequence and binary representations, March 2019. https://hal.archives-ouvertes.fr/hal-02062503
  5. 5.
    Caruso, X.: Computations with p-adic numbers. Journées Nationales de Calcul Formel. Les cours du CIRM (2018). https://hal.archives-ouvertes.fr/hal-01444183
  6. 6.
    Cloney, T., Goles, E., Vichniac, G.Y.: The \(3x+1\) problem: a quasi cellular automaton. Complex Syst. 1(2), 349–360 (1987)zbMATHGoogle Scholar
  7. 7.
    Cloney, T., Goles, E., Vichniac, G.Y.: The \(3x+1\) problem: a quasi cellular automaton. Complex Syst. 1(2), 349–360 (1987)zbMATHGoogle Scholar
  8. 8.
    Conway, J.: Unpredictable iterations. In: Number Theory Conference (1972)Google Scholar
  9. 9.
    Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Exploratory Papers of Cellular Automata and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015)Google Scholar
  10. 10.
    Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65(4), 695–716 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hew, P.C.: Working in binary protects the repetends of 1/3\({}^{\text{h}}\): comment on Colussi’s ‘The convergence classes of Collatz function’. Theor. Comput. Sci. 618, 135–141 (2016).  https://doi.org/10.1016/j.tcs.2015.12.033
  12. 12.
    Jakobsen, S.K., Simonsen, J.G.: Liouville numbers and the computational complexity of changing bases. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) Beyond the Horizon of Computability. CiE 2020. Lecture Notes in Computer Science, vol. 12098, pp. 50–62. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-51466-2_5
  13. 13.
    Kari, J.: Cellular automata, the Collatz conjecture and powers of 3/2. In: Yen, H.C., Ibarra, O.H. (eds.) Developments in Language Theory. DLT 2012. Lecture Notes in Computer Science, vol. 7410, pp. 40–49. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31653-1_5
  14. 14.
    Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal turing machines. Theoret. Comput. Sci. 210(1), 217–223 (1999).  https://doi.org/10.1016/s0304-3975(98)00117-0MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Korec, I.: The \(3x+1\) problem, generalized pascal triangles and cellular automata. Mathematica Slovaca 42(5), 547–563 (1992). http://eudml.org/doc/32424MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kurtz, S.A., Simon, J.: The undecidability of the generalized Collatz Problem. In: Cai, J.Y., Cooper, S.B., Zhu, H. (eds.) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol. 4484, pp. 542–553. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72504-6_49
  17. 17.
    Lagarias, J.C.: The \(3x + 1\) problem and its generalizations. Am. Math. Mon. 92(1), 3–23 (1985). http://www.jstor.org/stable/2322189
  18. 18.
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall Inc., Engelwood Cliffs (1967)zbMATHGoogle Scholar
  19. 19.
    Monks, K.G., Yazinski, J.: The autoconjugacy of the 3x+1 function. Discrete Math. 275(1–3), 219–236 (2004).  https://doi.org/10.1016/s0012-365x(03)00125-0MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems. Nonlinearity 4(2), 199 (1991)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, Oxford (2011)Google Scholar
  23. 23.
    Rozier, O.: Parity sequences of the 3x+1 map on the 2-adic integers and Euclidean embedding. Integers 19, A8 (2019)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Shallit, J., Wilson, D.A.: The “3x + 1” problem and finite automata. Bull. EATCS 46, 182–185 (1992)zbMATHGoogle Scholar
  25. 25.
    Stérin, T.: Binary expression of ancestors in the Collatz graph. In: Schmitz, S., Potapov, I. (eds.) 14th International Conference on Reachability Problems. LNCS, Springer (2020). (To appear). https://arxiv.org/abs/1907.00775v4
  26. 26.
    Stérin, T., Woods, D.: The Collatz process embeds a base conversion algorithm (2020). Expanded version. https://arxiv.org/abs/2007.06979v3
  27. 27.
    Vollmar, R.: On cellular automata with a finite number of state changes. In: Knödel, W., Schneider, H.J. (eds.) Parallel Processes and Related Automata/Parallele Prozesse und damit zusammenhängende Automaten. Computing Supplementum, vol. 3, pp. 181–191. Springer, Vienna (1981).  https://doi.org/10.1007/978-3-7091-8596-4_13

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Hamilton Institute, Department of Computer ScienceMaynooth UniversityMaynoothIreland

Personalised recommendations