Skip to main content

Efficient Restrictions of Immediate Observation Petri Nets

  • Conference paper
  • First Online:
Reachability Problems (RP 2020)

Abstract

In a previous paper we introduced immediate observation Petri nets [9], a subclass of Petri nets with application domains in distributed protocols and theoretical chemistry (chemical reaction networks). IO nets enjoy many useful properties [9, 14], but like the general case of conservative Petri nets they have a PSPACE-complete reachability problem. In this paper we explore two restrictions of the reachability problem for IO nets which lower the complexity of the problem drastically. The complexity is NP-complete for the first restriction with applications in distributed protocols, and it is polynomial for the second restriction with applications in chemical settings.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)

    Article  MathSciNet  Google Scholar 

  2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

    Article  Google Scholar 

  3. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling metabolic pathways: a survey. Nat. Comput. 9(4), 955–989 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for Petri nets and commutative semigroups: preliminary report. In: Chandra, A.K., Wotschke,D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual ACM Symposium on Theory of Computing, Hershey, Pennsylvania, USA, 3–5 May 1976, pp. 50–54. ACM (1976)

    Google Scholar 

  5. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. In: Proceedings of the National Academy of Sciences of the United States of America (2006)

    Google Scholar 

  6. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachability problem for Petri nets is not elementary. In: Charikar, M., Cohen, E. (eds.) Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 24–33. ACM (2019)

    Google Scholar 

  7. David, R., Alla, H.: Petri nets for modeling of dynamic systems: a survey. Automatica 30(2), 175–202 (1994)

    Article  MathSciNet  Google Scholar 

  8. Dinits, E.A.: Algorithm for solution of a problem of maximum flow in a network with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1970)

    MATH  Google Scholar 

  9. Esparza, J., Raskin, M., Weil-Kennedy, C.: Parameterized analysis of immediate observation Petri nets. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 365–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_20

    Chapter  Google Scholar 

  10. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  Google Scholar 

  11. Lin, H.: Stratifying winning positions in parity games. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 9–11. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68746-7_4

    Chapter  Google Scholar 

  12. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995)

    Article  MathSciNet  Google Scholar 

  13. Raskin, M., Weil-Kennedy, C.: Efficient restrictions of immediate observation Petri nets. CoRR, abs/2007.09189 (2020)

    Google Scholar 

  14. Raskin, M., Weil-Kennedy, C., Esparza, J.: Flatness and complexity of immediate observation Petri nets. In: CONCUR 2020 (2020)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Javier Esparza for useful discussions. We are also grateful to the anonymous reviewers for their advice regarding the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Raskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raskin, M., Weil-Kennedy, C. (2020). Efficient Restrictions of Immediate Observation Petri Nets. In: Schmitz, S., Potapov, I. (eds) Reachability Problems. RP 2020. Lecture Notes in Computer Science(), vol 12448. Springer, Cham. https://doi.org/10.1007/978-3-030-61739-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61739-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61738-7

  • Online ISBN: 978-3-030-61739-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics