Abstract
We study the applicability of quantum algorithms in computational game theory and generalize some results related to Subtraction games, which are sometimes referred to as one-heap Nim games.
In quantum game theory, a subset of Subtraction games became the first explicitly defined class of zero-sum combinatorial games with provable separation between quantum and classical complexity of solving them. For a narrower subset of Subtraction games, an exact quantum sublinear algorithm is known that surpasses all deterministic algorithms for finding solutions with probability 1.
Typically, both Nim and Subtraction games are defined for only two players. We extend some known results to games for three or more players, while maintaining the same classical and quantum complexities: \(\varTheta \left( n^2\right) \) and \(\tilde{O}\left( n^{1.5}\right) \) respectively.
Keywords
- Quantum game theory
- Quantum combinatorial games
- Quantum multiplayer games
- Quantum algorithm
- Nim
- Subtraction game
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
Note that in accordance with the chosen numbering of rows and columns of \(\varGamma \), \(\varGamma _{ji}=1 \implies i<j\), so this recursive definition of the function \(\textsc {Win}\) is valid.
- 2.
The term balanced naturally comes from the notion of balanced functions: balanced game \(\varGamma \) is such that its payoff function \(\textsc {Win}\left( \varGamma ,j\right) \) is balanced. Formally, the definition of perfect balancedness should look like \(\forall w: \#\big \{j:{\textsc {Win}\left( \varGamma ,j\right) =w}\big \}_{1 \le j \le n} = \frac{n}{k}\), but we use the little-o notation to extend our results also to almost balanced games.
- 3.
Should one feel that discarding in this step essentially destroys the uniformity of \(\textsc {Win}\left( \varGamma ,j\right) \), they can at step 2 assign each position “w stones”, \(0 \le w < k\), value \(\left( k-w\right) \bmod k\). This will make the last step obsolete, as no failure can occur, and will preserve the perfect uniformity. Our further observations are valid for either kind of picking a random balanced Subtraction game.
- 4.
Formally, these vectors in the complex Hilbert space represent equivalence classes of vectors under multiplication by non-zero complex number. We also note that, for the purposes of this paper and throughout all the algorithms which we mention and refer here, one may assume all complex values to be in \(\mathbb {R}\). However, in other important quantum algorithms the imaginary parts may play an essential role.
References
Ablayev, F., Ablayev, M., Zhexue, H.J., Khadiev, K., Salikhova, N., Wu, D.: On quantum methods for machine learning problems part I: quantum tools. Big Data Min. Anal. 3(1), 41–55 (2019)
Ambainis, A.: Understanding quantum algorithms via query complexity. arXiv preprint arXiv:1712.06349 (2017)
Ambainis, A., et al.: Quantum strategies are better than classical in almost any XOR game. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 25–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_3
Ambainis, A., Iraids, J., Kravchenko, D., Virza, M.: Advantage of quantum strategies in random symmetric XOR games. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 57–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36046-6_7
Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375–5378 (1992)
Benjamin, S.C., Hayden, P.M.: Comment on "quantum games and quantum strategies". Phys. Rev. Lett. 87(6), 069801 (2001)
Benjamin, S.C., Hayden, P.M.: Multi-player quantum games. Phys. Rev. A 64(3), 030301 (2001)
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)
Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)
Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)
Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)
van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)
Ferguson, T.S.: Game theory class notes for math 167, fall 2000 (2000). https://www.cs.cmu.edu/afs/cs/academic/class/15859-f01/www/notes/comb.pdf
Groverm, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)
Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)
Huang, Y., Ye, Z., Zheng, S., Li, L.: An exact quantum algorithm for a restricted subtraction game. Int. J. Theoret. Phys. 59(5), 1504–1511 (2020). https://doi.org/10.1007/s10773-020-04418-z
Khadiev, K., Safina, L.: Quantum algorithm for dynamic programming approach for DAGs. Applications for Zhegalkin polynomial evaluation and some problems on DAGs. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 150–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19311-9_13
Kravchenko, D., Khadiev, K., Serov, D.: On the quantum and classical complexity of solving subtraction games. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 228–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_20
Khan, F.S., Humble, T.S.: Nash embedding and equilibrium in pure quantum states. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 51–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_5
Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17(11), 1–42 (2018). https://doi.org/10.1007/s11128-018-2082-8
Kravchenko, D.: A new quantization scheme for classical games. In: Proceedings of Workshop on Quantum and Classical Complexity (Satellite event to ICALP 2013), pp. 17–34 (2013)
Kravchenko, D.: Quantum entanglement in a zero-sum game. Contrib. Game Theory Manag. 8, 149–163 (2015)
Li, Y.D.: BQP and PPAD. arXiv:1108.0223 (2011)
Long, G.-L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)
Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)
Mermin, D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 15 (1990)
Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)
Muhammad, S., Tavakoli, A., Kurant, M., Pawlowski, M., Zukowski, M., Bourennane, M.: Quantum bidding in bridge. Phys. Rev. X 4, 021047 (2014)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Phoenix, S.J.D., Khan, F.S.: Preferences in quantum games. Phys. Lett. A 384(15) (2020)
Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12(3), 1350011 (2013)
Roch, C., et al.: A quantum annealing algorithm for finding pure Nash equilibria in graphical games. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 488–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_38
Sprague, R.P.: Über mathematische kampfspiele. Tohoku Math. J. 41, 438–444 (1935)
Vaidman, L.: Variations on the theme of the Greenberger-Horne-Zeilinger proof. Found. Phys. 29, 615 (1999). https://doi.org/10.1023/A:1018868326838
Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement. Quantum Inf. Comput. 1(3), 1–25 (2001)
Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)
Zhang, S.: Quantum Strategic Game Theory. arXiv:1012.5141 (2010)
Acknowledgement
The research is supported by PostDoc Latvia Program, and by the ERDF within the project 1.1.1.2/VIAA/1/16/099 “Optimal quantum-entangled behavior under unknown circumstances”. A part of the reported study was funded by RFBR according to the research project No. 19-37-80008. A part of the research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project No. 0671-2020-0065.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kravchenko, D., Khadiev, K., Serov, D., Kapralov, R. (2020). Quantum-over-Classical Advantage in Solving Multiplayer Games. In: Schmitz, S., Potapov, I. (eds) Reachability Problems. RP 2020. Lecture Notes in Computer Science(), vol 12448. Springer, Cham. https://doi.org/10.1007/978-3-030-61739-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-61739-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61738-7
Online ISBN: 978-3-030-61739-4
eBook Packages: Computer ScienceComputer Science (R0)