Abstract
We study a class of non-clamped dynamical problems for visco-elastic materials, the contact condition is modeled by a normal compliance, with friction, damage and heat exchange. The weak formulation leads to a general system defined by a second-order quasi-variational evolution inequality on the displacement field coupled with a nonlinear evolutional inequality on temperature field and a parabolic variational inequality on the damage field. We present and establish an existence and uniqueness result of different fields, by using general results on evolution variational inequalities, with monotone operators and fixed point methods. Then, we present a fully discrete numerical scheme of approximation and derive an error estimate. Finally, various numerical computations are developed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
V. Barbu, Optimal Control of Variational Inequalities (Pitman, London, 1984)
O. Chau, Ph.D. Thesis, Analyse variationnelle et numérique en mécanique du contact, University of Perpignan (2000)
O. Chau, Habilitation Thesis, Quelques problèmes d’évolution en mécanique de contact et en biochimie, University of La Reunion (2010)
P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North Holland, Amsterdam, 1978)
G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique (Dunod, Malakoff, 1972)
M. Frémond, B. Nedjar, Damage in concrete: the unilateral phenomenon. Nucl. Eng. Design 156, 323–335 (1995)
M. Frémond, B. Nedjar, Damage, gradient of damage and principle of virtual work. Int. J. Solids Struct. 33, 1083–1103 (1996)
N. Kikuchi, J.T. Oden, Contact Problems in Elasticity (SIAM, Philadelphia, 1988)
J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars (1969)
P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications (Birkhäuser, Basel, 1985)
P.D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering (Springer, Berlin, 1993)
E. Zeidler, Nonlinear Functional Analysis and its Applications, II/A, Linear Monotone Operators (Springer, Berlin, 1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chau, O., Petrov, A., Heibig, A., Marques, M.M. (2021). A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage. In: Rassias, T.M., Pardalos, P.M. (eds) Nonlinear Analysis and Global Optimization. Springer Optimization and Its Applications, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-030-61732-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-61732-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61731-8
Online ISBN: 978-3-030-61732-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)