Skip to main content

A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage

  • Chapter
  • First Online:
Nonlinear Analysis and Global Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 167))

  • 918 Accesses

Abstract

We study a class of non-clamped dynamical problems for visco-elastic materials, the contact condition is modeled by a normal compliance, with friction, damage and heat exchange. The weak formulation leads to a general system defined by a second-order quasi-variational evolution inequality on the displacement field coupled with a nonlinear evolutional inequality on temperature field and a parabolic variational inequality on the damage field. We present and establish an existence and uniqueness result of different fields, by using general results on evolution variational inequalities, with monotone operators and fixed point methods. Then, we present a fully discrete numerical scheme of approximation and derive an error estimate. Finally, various numerical computations are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Barbu, Optimal Control of Variational Inequalities (Pitman, London, 1984)

    MATH  Google Scholar 

  2. O. Chau, Ph.D. Thesis, Analyse variationnelle et numérique en mécanique du contact, University of Perpignan (2000)

    Google Scholar 

  3. O. Chau, Habilitation Thesis, Quelques problèmes d’évolution en mécanique de contact et en biochimie, University of La Reunion (2010)

    Google Scholar 

  4. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  5. G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique (Dunod, Malakoff, 1972)

    MATH  Google Scholar 

  6. M. Frémond, B. Nedjar, Damage in concrete: the unilateral phenomenon. Nucl. Eng. Design 156, 323–335 (1995)

    Article  Google Scholar 

  7. M. Frémond, B. Nedjar, Damage, gradient of damage and principle of virtual work. Int. J. Solids Struct. 33, 1083–1103 (1996)

    Article  Google Scholar 

  8. N. Kikuchi, J.T. Oden, Contact Problems in Elasticity (SIAM, Philadelphia, 1988)

    Book  Google Scholar 

  9. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars (1969)

    Google Scholar 

  10. P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications (Birkhäuser, Basel, 1985)

    Google Scholar 

  11. P.D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering (Springer, Berlin, 1993)

    Book  Google Scholar 

  12. E. Zeidler, Nonlinear Functional Analysis and its Applications, II/A, Linear Monotone Operators (Springer, Berlin, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oanh Chau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chau, O., Petrov, A., Heibig, A., Marques, M.M. (2021). A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage. In: Rassias, T.M., Pardalos, P.M. (eds) Nonlinear Analysis and Global Optimization. Springer Optimization and Its Applications, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-030-61732-5_4

Download citation

Publish with us

Policies and ethics